a hands-on approach

Arthur Luehrmann
Herbert Peckham

AAAAAAAAAAAAAAAAAA

ARERIE
PASCAL

A Hands-On Approach

ARTHUR LUEHRMANN

University of California, Berkeley

HERBERT PECKHAM

Gavilan College

McGraw-Hill Book Company

New York St Louis San Francisco Auckland Bogotd Hamburg
Johannesburg London Madrid Mexico Montreal New Delhi Panama

Paris Sdo Paulo Singapore Syndey Tokyo Toronto

Library of Congress Cataloging in Publication Data
Luehrmann, Arthur.

Apple PASCAL: a hands-on approach.

(Programming language series)

Includes index.

1. PASCAL (Computer program language) 2. Apple
computer — Programming. |. Peckham, Herbert D., joint
author. Il. Title. Ill. Series.

QA76.73.P2L83 001.64'24 80-27665
ISBN 0-07-049171-2 (pbk)

APPLE PASCAL™: A Hands-On Approach

Copyright © 1981 by McGraw-Hill, Inc. All rights reserved.
Printed in the United States of America. Except for
computer programs, no part of this publication may be
reproduced, stored in a retrieval system, or transmitted, in
any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the prior
written permission of the publisher.

1234567890KPKP8987654321

This book was set in Megaron by Instant Type and
Graphics, Monterey, California. The editor was Charles E.
Stewart; the production supervisor was Joe Campanella.
The cover was designed by Oona Johnson.
Kingsport Press, Inc., was printer and binder.

ACKNOWLEDGMENTS

The Apple Pascal™ system incorporates
UCSD Pascal™ and Apple® extensions for
graphics, sound, paddles, and other func-
tions. UCSD Pascal was developed largely by
the Institute for Information Science at the
University of California, San Diego, under the
direction of Kenneth L. Bowles.

“Apple” and “Apple Pascal’ are trademarks
of Apple Computer Inc. “Apple’” is a regis-
tered trademark of that company. “UCSD Pas-
cal’’ is a trademark of the Regents of the Uni-
versity of California. Unauthorized use of
these trademarks is contrary to the laws of the
State of California or of the Federal Govern-
ment.

This book is a tutorial guide to Apple Pascal,
not a formal specification of the software as
delivered to the buyer now or in future soft-
ware revisions. Apple Computer Inc. makes no
warranties with respect to this book or to its
accuracy in describing any version of the
Apple Pascal software product.

CONTENTS

PREFACE Xiii

INTRODUCTION 1
Why this book? 1
Why Pascal? 2
Why computers? 6
How to use this book 7

SESSION 1. GETTING STARTED 9
1-1 Booting up Pascal 11
1-2 The COMMAND prompt line 12
1-3 Traveling around the system 13
1-4 More than meets the eye 15

SESSION 2. TYPING IN PROGRAMS — THE EDITOR 19
2-1 A warm-up exercise 19
2-2 Entering the EDITOR 20
2-3 Typing in new text 22
2-4 Moving inserted text into the workspace 23
2-5 The RESET key 23
2-6 Moving the workspace to diskette 24
2-7 An overview of editing 27

SESSION 3. WRITING, RUNNING, AND CHANGING PROGRAMS 33
3-1 Clearing the workfile 34
3-2 Entering PROGRAM TINY 35
3-3 Running PROGRAM TINY 36
3-4 Changing the program 38
3-5 Running the changed program 40

vii

viii CONTENTS

3-6
3-7
3-8
3-9

Dealing with typing errors 41
Text lines in Pascal programs 42
WRITE and WRITELN 43

About those semicolons 45

SESSION 4. GENERATING SOUND 55

4-1
4-2
4-3
4-4
4-5
4-6
4-7
4-8
4-9

A short review 56

Generating sound 56

Another way to make the same sound 58
The three properties of variables 62

Inputting values from outside the program 64
The FOR statement 67

Grammar rules for the FOR statement 69
Refining the program 70

Storing programs on a separate diskette 72

4-10 Recalling programs from a separate diskette 74

SESSION 5. INVENTING NEW WORDS: PROCEDURES 81

5-1
5-2
5-3
5-4
5-5
5-6
5-7

Starting up 82

Duplicating blocks of text 83

Defining new words 86

Changeable procedures 90

Parameters, local, and global variables 92
Procedures and problem-solving 96
Grammar rules for procedures 97

SESSION 6. MORE INVENTED WORDS: FUNCTIONS 107

6-1
6-2
6-3
6-4
6-5
6-6
6-7
6-8
6-9

Random numbers 107

Think of a number from 1 to 10 109
Building a better function 111

The form of the function block 111
Defining FUNCTION RND 113
Program refinements 114

Adding comments to your program 116
Filing your program away 118

More about the EDITOR 119

SESSION 7. DRAWING PICTURES 129

7-1
7-2
7-3
7-4
7-5
7-6
7-7

Paddle sketch 129

Drawing in colors 132

A new Pascal statement: the REPEAT loop 132
Invisible lines and background colors 134
Random sketching 135

Loops inside of loops 136

A lesson in user-engineering 137

CONTENTS ix

7-8 Counting Pascal statements 138

7-9 Constants 139

7-10 Viewports 143

7-11 TURTLEGRAPHICS and INITTURTLE 143
7-12 Making your own graphic procedures 145

SESSION 8. BRANCHING STATEMENTS: IF AND CASE 151
8-1 A simple two-way branch 152
8-2 Boolean variables and functions 154
8-3 READ and READLN 156
8-4 The semicolon bug 157
8-5 Nested IF statements 158
8-6 The abbreviated-IF bug 160
8-7 Another approach to multiway branches 163
8-8 Grammar rules for the IF statement 165
8-9 The READ and READLN problem 167
8-10 The CASE statement 169
8-11 Grammar rules for the CASE statement 170
8-12 A graphic application 171

SESSION 9. STRING VARIABLES AND WHILE LOOPS 181
9-1 Getting started with strings 181
9-2 The LENGTH function 183
9-3 Making long strings out of short ones 185
9-4 Locating one string in another 188
9-5 Extracting pieces of strings 190
9-6 Eliminating pieces of strings 191
9-7 Combining string operations 192
9-8 Miscellaneous facts about strings 195
9-9 A word processing program 197
9-10 Grammar rules for the WHILE statement 201

SESSION 10. NUMBER TYPES AND ARITHMETIC 209
10-1 How big and how small? 209
10-2 The uninitialized-variable bug 215
10-3 Arithmetic with intergers 216
10-4 Arithmetic with long integers 221
10-5 Arithmetic with real numbers 222
10-6 Some mathematical functions 226
10-7 An application of real numbers 227
10-8 One plus one isn’t always two 228
10-9 Interactions between numeric types 230

SESSION 11. SCALAR DATA TYPES AND SETS 237
11-1 White, orange, blue: what are they? 237

X CONTENTS

11-2 Spelling rules for constants 240

11-3 Scalar data types 241

11-4 Creating new scalar data types 247
11-5 Grammar rules for scalar data types 251
11-6 Sets of scalar data 253

SESSION 12. ARRAYS 267
12-1 A list of words 268
12-2 Grammar rules for array variables 271
12-3 Alphabetizing a list of words 274
12-4 Top-down design of a card game 280
12-5 CARDGAME — filling in the details 282
12-6 Arrays as variables and parameters 289
12-7 Value parameters and reference parameters 291

SESSION 13. RECORDS AND FILES 301
13-1 Defining a variable of type RECORD 301
13-2 Grammar rules for the RECORD data type 306
13-3 Defining a variable of type FILE 311
13-4 Getting data out of disk files 315
13-5 File input using the EOF function 317
13-6 Grammar rules for the FILE data type 319
13-7 TEXT files, READ and WRITE 320
13-8 INTERACTIVE files, INPUT, OUTPUT and KEYBOARD 325
13-9 Removing files from a diskette 329

SESSION 14. RECURSION 335
14-1 Recursive arithmetic 335
14-2 Recursive pictures 339
14-3 Another recursive picture 341
14-4 Mutual recursion 345

WHERE DO YOU GO FROM HERE? 359

APPENDIXES
A. Getting started with a single disk drive 365
B. Getting started with a dual disk drive 371
C. Names, reserved words, and built-in names 377
D. Command structure of Apple Pascal 379
E. Size and quantity limits in Apple Pascal 383
F. ORD and CHR values of ASCII character set 387
G. Using two disk drives 391
H. Differences between Versions 1.0 and 1.1 of Apple Pascal 393

CONTENTS xi

SOLUTIONS TO PROBLEMS 399
INDEX 421

COMPILER ERROR MESSAGES 430

PREFACE

Our constant goal in writing this book has been to find a sequence of compelling
activities for you, the reader, to carry out on your own computer in such a way that
you will come to “know” Pascal in much the same way that you came to “know” your
native language without being schooled in it. We have assumed that you begin by
knowing little of computers or computer languages; but we intend that, after you
complete the 14 Sessions and 30 to 40 hours of hands-on activities, you will have a
solid working knowledge of nearly all the vocabulary, grammar rules, and meanings
that make up Pascal.

If you are studying Pascal in a school or college setting, the computer activities in
this book will give you the concerete experiences so essential for understanding the
rules and abstractions being presented in your classes. If you are out of school and
cannot or prefer not to enroll in a formal course in Pascal, these hands-on sessions
with a computer will allow you, at your own pace and under your own control, to
develop a substantial knowledge of the language.

We recognized from the outset that this kind of book had to be far freer of defects
than the average textbook. Since most of the learning takes place when you are
sitting before the computer carrying out the tasks suggested, possibly alone or at
some distance from any expert help, it was essential for us to be sure that the words
were clear, the programs letter perfect, and the basic strategy an effective one.

Throughout the writing, we have been most fortunate in finding over a dozen
individuals who were so frustrated in their previous attempts to learn Pascal that
they could be coaxed into using (and criticizing) the early drafts of the book. They
brought to the task a collection of highly developed skills in teaching, writing
textbooks, programming, thinking clearly, and bringing order to unruly sentences.
Alan Portis was a constant source of enthusiastic encouragement and good ideas.
Tim Aaronson, who has taught programming to young people for many years, was
especially sensitive to subtle misconceptions and misleading oversights. Victor
Jackson had a very sharp eye for inconsistencies and flawed programs. Martha
Luehrmann was absolutely tenacious in her complaints, usually justified, about
statements and explanations that were off the mark. And Elizabeth Weal, who by day
works in the Publications Department of Apple Computer, volunteered her critical
eye and corrective skills to the rough edges of our prose. We owe her a special debt.
Others who worked through the early drafts were Arthur Kessner, Harold Peters,
Robert Fuller, Dean Zollman, and Marvin Marcus.

xiii

xiv PREFACE

Thanks to the use of a word processing system from the beginning, we were able
to absorb criticism and suggested changes and shoot back revisions in rapid
succession. Some sessions went through as many as six major rewrites before all of
us were content. The program segments reproduced in this book were all printed
under computer control from disk files that had previously been executed. Finally,
the text was automatically composed on a Compugraphic photocomposition unit
from the final draft of the word-processor text files. We hope that these measures
have eliminated all but a few typographic errors, and that you will forgive those.

Arthur Luehrmann

Herbert Peckham

AAAAAAAAAAAAAAAAAA

INTRODUCTION

If you already own this book and have access to an Apple Il computer, then you
are probably eager to startlearning to use Apple Pascal. In that case you should skip
most of this introduction except for the final section, “HOW TO USE THIS BOOK”.

On the other hand, if you're in a shopper's frame of mind—trying to decide
whether or not this book is for you, or whether or not Pascal is for you, or whether or
not learning to use the computer is for you—then spending some time on the
introduction will be worthwhile. Our goal here is to explain a bit about the design
and intent of the book, to answer the question, “Why Pascal?”, and to say briefly why
learning to use computers is worth the effort of anyone who can read and write.

WHY THIS BOOK?

A fair question. There are a dozen or so books on programming in Pascal,
including an excellent treatise by the author of the language. Does the world really
need another one?

It won’t come as a surprise that we think so. Here are our reasons:

8 None of the books we know of deal with the details of the learner's computer,
such as keytop labels, the system’s editor, and file system. A beginner needs
more help at first with these things than with anything else. Our goal in this book
is to teach you everything that you need to know in order to write, enter, and run
Pascal programs on your Apple computer system.

® Most books are written by computer scientists who teach university courses.
These books feature college-level math, science, and business applications.
The same programming concepts can be illustrated in other application areas
accessible to more people: drawing pictures, working with text, or making
music. We do that.

® Most authors seem to be concerned with coverage of every minute detail and
subtle nuance of the language, as though theirs was the last book ever to be read
on the subject. We care more that beginners get safely off to agood start and less
about having the last word.

® Most existing Pascal books have the flavor of lectures. We think there is a need

for a book written for beginners who will learn by doing rather than by listening
and reading, and who will want to work at their own pace.

1

2 APPLE PASCAL

Our goal in this book is to guide you through a sequence of revealing
experiences in using Pascal for the purpose of communicating with your computer.
During the process of communication (and failure to communicate) you will learn
the underlying grammar of the language, just the way you learned most of English
grammar before going to school.

Don't try to sit back in a comfortable chair and just read this book through. It
won’t work that way. Go instead to the desk or table where your Apple computer is
located, sit with the book open in your lap or next to the computer, and carry out all
the activities in each session.

WHY PASCAL?

If you are already sold on Pascal, then the question will not be a burning one for
you and you should probably skip this section. On the other hand, if your response is
“Pascal who?”, then better read on.

Communicating with a computer means formulating your problem and writing
your instructions in a computer language. Over the years people have invented
more than a hundred different computer languages, and Pascal is the name of one of
them. It is a relative newcomer, defined in 1970 by the Swiss computer scientist
Niklaus Wirth. Other popular languages go by the names Basic, Fortran, Cobol,
Algol, PL/1, and APL.

At present more people know how to program in Basic than in any other
language (thanks to the sale of nearly a million Basic-speaking computers in the
past two years). Nevertheless, more lines of program statements have been written
in Cobol, astandard language for business applications, than in any other language.
The great majority of scientific and engineering programs are written in Fortran, one
of the oldest computer languages. Applied mathematicians are especially fond of
APL. Computer scientists use Algol as a standard for publishing programs in some
journals. When IBM Inc. announced PL/1, they advertised it as a language that
would quickly replace Fortran and Cobol by doing everything they do and more.

So, why Pascal? A frivolous, but not totally inappropriate answer would be “Why
not?” Despite often vehement arguments by defenders of one language and
attackers of another, no one of the common computer languages is deeply different
from the others. Each one has a vocabulary of about a hundred or so words and
symbols. Each one has a strict grammar, well defined and with no exceptions. Most
“sentences” in any one language translate easily and directly into similar
“sentences” in another language. All computer languages have about the same
“expressive”’ range. All can be learned in a week, and experienced computerists
usually know two or three languages well. So why not Pascal, or any other popular
language? As the Chinese proverb goes, “Let a hundred flowers bloom...”

We are not entirely unsympathetic towards that attitude. In our view, learning to
communicate with the computer is the important thing, whatever language is used.
Norare we much impressed by people who claim that this “good” language will drive
out that “bad” language. All languages are human inventions, but they take on a life
and cultural identity of their own. English is demonstrably inferior to Esperanto, but
Shakespeare and Byron managed to say some powerful things in English, while
hardly anybody says anything in Esperanto.

INTRODUCTION 3

Actually, we think these arguments should be turned around. Since differences
between computer languages are fairly small, why not start out with one that is
reasonably easy to pick up and good to grow with? It happens that two of the
common languages, Basic and Pascal, were designed originally for teaching
computing. They are both good choices for beginners, though in different ways.
Basicis much easier to get started with, partly due to language design and partly due
to the very interactive way it is usually implemented. If you “boot up” your Apple I
with the BASICS disk, you can type the following one-line program

FRINT 238 + 429

press the RETURN key and immediately see the program run, with the result “667”
printed on your screen.

Pascal, on the other hand is a bit slower to getinto and requires more knowledge
of both the language and the computer’s facilities for entering, editing, and running
programs. The Pascal program to add 238 + 429 and print the answer is four lines
long:

FROGRAM ADDITIONS
REGIN

WRITELN (238 + 429)
ENI.

To type it, you have to “enter the editor”. Then you have to “quit the editor”. Then
you have to “run the program”. If you make a typing error when typing a statement in
a Basic program, you are told so and may simply retype the line. In Pascal youdon't
discover the error until you run the program. To fix it, you must return to the editor,
make the change, quit the editor, and run the program again.

So Basic wins, hands down, on ease of getting started and of quick trial-and-
error programming. Trouble comes, however, when Basic programs get long and
require modifications, perhaps by someone other than the original author. Here lies
one of Pascal’s greatest strengths: legibility by human readers. Reproduced here
are Basic and Pascal versions of a program that simulates the roll of dice in a craps
game. Without worrying too much about the details, decide for yourself which
version looks more like it might actually represent a craps game.

4 APPLE PASCAL

Applesoft Basic Program

100 DEF FNR (X) = INT (1 + & X RND (X)) + INT (1 + 6 % RND!

110 LET R1 = FNR (1)

120 FRINT "YOU ROLLED A "%
130 IF R1 = 7 THEN 130

140 IF Ri «* 11 THEN 170
150 FRINT *YOU WIN®

160 GOTO 110

170 IF R1 = 2 THEN 200
180 IF R1 = 3 THEN 200
190 IF R1 <> 12 THEN 220

200 FRINT *YOU LOSE*

210 GOTO 110

220 LET R2 = FNR (1)

230 PRINT "NEXT ROLL IS *"j
240 IF R2 R1 THEN 150
250 IF R2 7 THEN 200
260 GOTO 220

270 END

(X))

INTRODUCTION

Apple Pascal Program

FROGRAM DICEGAME S

USES
AFFLESTUFF 5

CONST
HELLFREEZESOVER = FALSE/}

VAR
DICEy FOINT ! INTEGERS

FROCEDURE ROLLEM (VAR TOSS ¢ INTEGER)S#

REGIN
TOSS = RANDOM MODl 6 + 1%
TOSS = TOSS + RANDOM MOD 6 + 1%
WRITELN ¢(/YOU ROLLED A ’» TOSS)
ENDy

BEGIN
REFEAT
ROLLEM (DICE)#
CASE DICE OF
7y 11¢
WRITELN (/YOU WIN’)3j
2y 3y 122
WRITELN (‘YOU LOSE’)s
4y Gy b6y 8y 9y 102
REGIN
FOINT $¢= DICEj
REFEAT
ROLLEM (DICE)
UNTIL (DICE = FOINT) OR (DICE = 7)j
IF DICE = FOINT THEN
WRITELN ¢(/YOU WIN‘)
ELSE
WRITELN ¢(/YOU LOSE’)
END
END
UNTIL HELLFREEZESOVER
END.,

Unless you're already a Basic expert, you probably had a hard time seeing any
plan or design in what looks like line after line of similar text in the first version. By
contrast, the text of the Pascal version divides into horizontal blocks of various
kinds, with names such as CONST, VAR, and PROCEDURE. Furthermore, Pascal
allows the author to use indentation to clarify further the plan of the program. Most
versions of Basic today treat indentation as a mistake and proceed to remove it from

the program.

5

6 APPLE PASCAL

Basic's problem of illegibility and incomprehensibility increases drastically as a
program grows in size and complexity, and Pascal's edge widens quickly.
Experiments have shown that Pascal programmers are several times faster at
making changes and corrections to larger programs than are people using
unstructured languages such as Basic and Fortran.

There is another reason why Pascal is agood first language to learn. As arelative
newcomer to the family of computer languages, it benefits from a lot of deep
thinking that went on among computer scientists as to why programs written in the
languages available in the early 1960’s were so hard to prove to be correct. The result
of their studies was a set of language requirements that make it possible merely by a
careful reading of a program, block by block, to know if it will work. Pascal was
among the first attempts to produce a practical language that also embodies many
of these research results.

In a very real sense Pascal is a working model of modern thinking about certain
goals of computer languages. Like all good models, it is being widely imitated. The
new American National Standards Institute (ANSI) Fortran standard includes some
of the same organizational structures found in Pascal. Work is nearing completion
on ANSI Basic, which also includes all these structures, as well as long variable
names, and named procedures. Among languages emerging today, it is fairly
accurate to describe Ada, the language soon to be required of all contracters who
want to do business with the U.S. Department of Defense, as an enhancement of
Pascal.

Learning to program in Pascal, therefore, is a good way to become familiar with
language ideas that appear not just in Pascal but in some older and most new and
newly revised languages. Your next language will be easier if you already know
Pascal.

Even so, italways pays to use the right tool for the job; and for many jobs Basic on
acomputer such as the Apple Il is the right tool. Itis easy to get into, gives you quick
error diagnoses, and is a cinch to edit and try again—just the things Pascal is
weakest at. Simple problems usually yield to a quick-and-dirty, trial-and-error
approach and don't justify much planning. The trick, of course, is to know when that
approach is likely to fail, so as to avoid it. Our rule of thumb is simple. If your
program is small enough to fit on your TV screen, stick with Basic. If it's bigger or if
it's probably going to grow bigger, switch to Pascal.

WHY COMPUTERS?

If the question is irrelevant to you because you already know about computers
and believe that they are important, then skip this section. Unless, of course, you
enjoy sermons to the faithful. If you have your doubts, however, read on.

Most everyone knows about the speed and accuracy of the modern electronic
computer, its ability to carry out long and tedious calculations exactly as instructed,
and its growing visibility in the workplace, stores, schools, and even homes. Today
most people probably recognize that computers play a significant, even critical, role
in their routine affairs: commuting to work, buying groceries, receiving bills, paying
bills with checks or credit cards, making airline or motel reservations, telling time on
a digital watch, tuning a TV set, receiving “personalized” junk mail, using an
automatic telephone dialer, listening to a digital recording of music, watching a

INTRODUCTION 7

videodisk TV recording, setting the time and temperature of a microwave oven or of
a modern home thermostat, and many other things. Not everyone is happy with what
some see as a blind dependency on the new technology; especially when it or, more
frequently, its human operators and programmers make errors. But even critics
admit that the computer is a fixed part of life today.

Despite a general popular awareness of computers, remarkably few people
today are literate users of computers. It won’t come as a surprise, then, that most
people have missed something fundamental about computing: namely, that it is a
creative activity carried on by human beings. A computer does what it does because
some person told it not only what to do but how to do it. A person who knows how to
express thoughts in a computer language has a new way of talking, writing, and
thinking about the ideas that he or she wants to embody in the instructions to the
computer. And any time that you discover a new way to think about something, ora
new language for describing your thoughts and setting them down for a closer look,
then you have a new tool for solving problems. This is the main, usually overlooked
point about computing.

Actually, it isn’t terribly surprising that this point is missed by so many people.
The time we live in is in many ways like the first decades after the printing press was
invented, when nearly everyone except a small priesthood was illiterate. People
recognized that printing technology would make business and government
transactions and record keeping a lot easier, which in turn would have animpacton
daily life. Yet few people, even several centuries later, recognized that the main
effect would come when the entire public became literate and could use reading and
writing for personal satisfaction and gain.

The appearance of the inexpensive personal computer is like the appearance of
the printing press. In the public mind computer literacy still belongs to that small
priesthood who painfully acquired their skills in the service of large, cloistered
machines, unapproachable by ordinary laymen. Most otherwise educated people
today believe that whatever computer needs they have must be handled by speaking
in English to a member of the computer priesthood, who will translate their wishes
and prayers into computer language and then communicate them to the inscrutable
machine.

Of course, that is not the case; and millions of people today are discovering the
ease, rewards, and personal satisfaction of direct communication with and control
of a computer. In fact, recent research shows that the main reason most people buy
a personal computer is not to put it to practical use but to learn to communicate with
it and to become computer literate. As their skills and understanding develop, they
discover uses that they could not have imagined in advance.

To conclude this sermon, you should learn computing for the same reason that
you learned to read, write, and to do math: because it is good for your mind.

HOW TO USE THIS BOOK

As we said before, this book is a carefully sequenced set of activities for you to
carry out at the keyboard of your computer. It will make very poor and probably
confusing reading if you treat it as a conventional textbook. You will find that rules,
explanations and summaries are present, but they all follow directly out of your
actual experiences at the keyboard.

8 APPLE PASCAL

It is a good policy in the first five or six sessions not to stray very far from the path
we have laid out for you, or to try to jump ahead in the book; if you do, don’t be
surprised if you occasionally get into situations that you may not be ready to handle.
None of this will damage you or the computer, of course, and if worse comes to
worse, you can always turn off the power switch and start over.

While our main goal here is to have an inexperienced person succeed in learning
Pascal, we have not taken the easy way out and given you only atrivial subset of the
language. There is little point in learning Pascal if all you get out of it are the features
that are literal translations of other languages. Instead we introduce you quickly to
procedure and function blocks, a variety of data types, and the main Pascal control
structures. Toward the latter half of the book you will find activities on programmer-
defined data types, arrays, sets, and records. While some of these are heavy-duty
topics, each one builds on your previous understanding and on specific, new,
concrete experiences. If your learning comes out of steady progress through these
activities, we believe you will be ready for each new concept or rule. Yet, evenif you
decide after Session 8 or 9 or 10 that you know enough about Pascal for a while, you
will have acquired a substantial understanding and will be able to write quite
complex programs.

As to the specifics of your particular computer system, we assume that you have
an Apple Il or Apple Il Plus computer, a Language System, a single disk drive, and
Apple Pascal Version 1.1 diskettes. If you have two disk drives, don’t conclude that
this book is not for you. You will need only a single drive for all activites here, but
everything that you learn will carry over to a two-drive system. If you have Version
1.0 diskettes (also called UCSD Pascal Version Il.1) you may still use this book
effectively. You should turn to Appendix H before doing each session, however, and
acquaint yourself with any differences that will show up when using the Version 1.0
diskettes. :

SESSION

ONE

GETTING STARTED

First, a procedural note: this book is divided into sessions. Each session will give
you about two hours activities to do with your computer. You should plan to work
through a complete session at one time, without interruption, if possible. Atthe end
of each session you will find questions and problems. It is a good idea to test your
understanding by working on a few of them.

Second, don’t expect each topic to be covered fully in the session where you first
encounter it. Our goal at each point is to give you enough experience to be able to
communicate certain instructions to your computer successfully. As your
knowledge grows, we will cycle around to each topic several times, adding details
and qualifications to what you already know.

Finally, if your book is more than three feet from your computer, you are in
trouble. We will be continually asking you to do things with your computer. (When
we do that, we'll put the instructions in bold faced type.) There is little point in trying
to read the book without carrying out these activities. Learning is a lot easier when
you can relate words and ideas to concrete experience.

Remember this fact: like the physical world
around us, a computer is what it does and not
necessarily what we say about it. Test your
understanding by experimentation, and be-
lieve what you see.

In order to use Pascal on your Apple computer, you need the following items:
= An Apple Il or Apple Il Plus computer with 48 K bytes of memory.
® A Language System properly installed in your computer.
® A TV monitor or a TV receiver plus RF modulator, properly installed.

m At least one disk drive. (Two are useful for making disk copies, but you will be
using only one drive while learning Pascal.)

® A pair of game paddiles, properly installed in your computer.

10

APPLE PASCAL

Apple Pascal Version 1.1 diskettes marked APPLEO: and APPLE3:. (Youcan also
use Apple Pascal Version 1.0 diskettes, but you will encounter a few differences
that are explained in Appendix H.)

At least one duplicate copy each of APPLEO: and APPLES..

If you have all seven of these items, then you are ready to go to work on this

session. If you don’t have all of the first six items, then you won'’t be able to do
anything further until you have all of them.

If you are a new owner of the Apple Language System, then you probably have all

the items except the last—the duplicates of the APPLEO: and APPLES3: diskettes.
This brings up an ugly fact. On the one hand, you are truly asking for trouble if you
go ahead and use your only copy of these precious diskettes, and risk destroying the
information on them. On the other hand, making the two back-up copies is a 26-step
process on a two-drive system and more than twice that on a single drive. If you are
just beginning to learn your way around the Pascal System, that may be a longer
journey than you are ready to take. Here is our advice:

See whether the dealer who sold you your Language System will sell you
duplicates of APPLEO: and APPLE3:.

Failing that, borrow duplicates from a friend until you get familiar enough with
the Pascal system to make your own copies.

If these strategies fail, you'll have to go it alone. If you have two disk drives, turn
now to Appendix B for a step-by-step guide through the mysteries of copying.

If you have a single disk drive, try to borrow another drive from a friend; then turn
to Appendix B.

Failing that, your only recourse is single-drive copying. Turn now to Appendix A
for a guide that leads you step by step through the process.

In no case should you give in to the
temptation to go ahead without back-up
diskettes.

After you have obtained your duplicates of APPLEQ: and APPLES3:, by whatever

means, go on to the following section.

GETTING STARTED 11

1-1 BOOTING UP PASCAL

Every session of this book begins with what is called the “boot-up” step. One of
the things that you will learn about computers is that by means of programming they
can be made to perform a multitude of distinct tasks. Without a program, they can do
nothing. You will be using your Apple computer to write, edit, and run Pascal
programs. To do that task, your computer has to be taught—that is, programmed—
to understand Pascal. That is what is going on during the Pascal boot up. If you had
wanted to write Basic programs instead, you would use the Basic boot-up
procedure to teach your computer to understand Basic.

The phrase “booting up” comes from the idea of “pulling oneself up by one’s own
bootstraps.” If the computer needs a program to do anything, then you might
wonder how it knows enough even to move a copy of a program from diskette into its
memory. How does it get started? The answer is that it pulls itself up by the
bootstraps. There is a very tiny program permanently stored in one of the integrated
circuits inside your computer, and it goes into effect whenever you turn on the
power switch. All that it does is to turn on the disk drive, read in another short
program from the diskette in the drive, and start that program running. That
program, called the bootstrap loader, has the job of bringing from diskette all the
other programs needed to enable your Apple Il to “speak Pascal”. The bootstrap
loader program is contained on the APPLES3: diskette, while the other programs are
on APPLEO:.

If this description seems overly technical, don’t worry. You don’t really need to
know how your computer “learns” Pascal during boot up. Just follow each step
below and the process will happen.

1. Turn on the TV power switch. Turn the volume down. If you have a game
connector, switch it to GAME, TV SCOREBOARD, or the like. Turn the TV
receiver to the proper channel.

2. If the power to your Apple is on, turn it off. The power switch is on the back and is
easily reached by the left hand. When it is off, the POWER light at the lower left
corner of the keyboard is also off.

3. Insertthe APPLES3: diskette into the disk drive. Lift the drive door fully open. Hold
the diskette in your right hand, palm up, with your thumb on the printed label.
Insert the diskette carefully into the drive and lower the door until it snaps shut.

4. Turn on the computer power switch. The POWER light will come on, the red IN
USE light on the disk drive will come on, and you will hear the drive spinning and
clicking. On your TV screen you willimmediately see the phrase “APPLE][".Ina
few seconds the screen lights up with at-signs. A second later, the disk drive
stops whirring, its red light goes out, and the screen clears except for a white
rectangle at the upper left. Immediately after that, the following text appears:

INSERT EOOT DISK WITH SYSTEM.FASCAL
ON IT» THEN FRESS RESET

12 APPLE PASCAL

(Note: if no such text appears, it means that you are using Apple Pascal Version 1.0
diskettes. See Appendix H for further information.)

5. Remove the APPLES3: diskette and insert the APPLEO: diskette into the disk drive.
Handle the diskettes carefully, palm up with the thumb on the label. Close the
door.

6.Press the keyboard key marked “RESET”. |f nothing happens, hold the CTRL
key down and press the RESET key. The RESET key is in the upper-right corner
of the Apple keyboard; the CTRL key is at the extreme left. After about 15
seconds of more red lights, at-signs, and whirring disk sounds, the following
message appears on your TV:

WELCOME AFFLEOs TO AFFLE II FASCAL 1.1
RASED ON UCSD FASCAL II.i

CURRENT DATE IS 30-JAN-81

(C) AFFLE COMFUTER INC., 1979y 1980
C) U.C. REGENTS 1979

About a second later, all activity stops and the following line appears at the very top
of your screen:

COMMAND: E(DIT» R(UNs» FCILEy C(OMFy LCIN

The appearance of this line tells you that you have successfully booted up Pascal
and that your computer is ready for your command. (The current date may be
different.)

1-2 THE COMMAND PROMPT LINE

Actually you're looking at only a part of the COMMAND prompt line. Do the
following: hold down the key marked “CTRL” (at the left end of the keyboard) and at
the same time press the A key, near it. (We'll call this process “CTRL-A" in the
future.) Now type CTRL-A again. Do it once more.

GETTING STARTED 13

What you are seeing is the entire COMMAND prompt line, one half at a time.
When you boot up Pascal you see the left half. When you type a CTRL-A you see the
right half:

Ky X(ECUTEs A(SSEMy D(EBUG,? [1.11

When you type another CTRL-A, the left half flips back, along with any other
characters that were on the left half of the screen originally.

This behavior is a general property of the Apple Il Language System. The Apple
screen can display lines of text that are only 40 characters long, or less. But the
Pascal system is designed to work correctly with lines that are 80 characters long.
You should think of the Apple screen as giving you a 40-character window for
inspecting the full 80-character Pascal page. When you first boot-up Pascal the
window looks out on the left half of the page. When you type CTRL-A the window
quickly moves over to the right half of the full Pascal page. Another CTRL-A
switches you back.

CTRL-A, therefore, is your window switch, and it is always in effect whenever
you want to check the other half of the Pascal page for information or instructions.
Watch out for the following user trap: by accident you forget to switch back to the
left half, and then you type some command that produces text that appears only on
the left side of the Pascal page. What happens? You don'’t see it, because your
window is looking at the right half, which may have nothing at all on it. Very
mysterious. When this happens, remember to type CTRL-A and make sure that you
see the whole Pascal page before looking for more serious problems.

If you are now looking at the right half of the page, use the CTRL-A switch to get
back to the left half, so that you see the beginning of the COMMAND prompt line.

The COMMAND prompt line is the most important “place” in the Pascal system.
You enter the system through the COMMAND line and will often pass through the
COMMAND line on your way between one part of the system and another one, as
you will see in the next section.

1-3 TRAVELING AROUND THE SYSTEM

Notice that one of the “words” in the COMMAND prompt lineis “F(ILE”. Type the
F key and see what happens.

The Pascal page goes blank and, after some disk activity, a new prompt line now
appears at the top line. (If by chance APPLEQ: is notin your drive now, just putitin. If
you don'’t, your computer will keep looking for it foreverl When the COMMAND
prompt reappears, start over.) Since your window is looking at the left half of the
Pascal page, you see this:

FILER?: Gy Sy Ny Ly Ry Cy Ty Dy Qy C1.11

(If, by accident, your window is looking at the right half of the page it will see
nothing. Type CTRL-A to fix it.)

14 APPLE PASCAL

This new prompt line tells you that you have left the “COMMAND level” of the
Pascal system and have “entered the FILER". The FILER prompt line tells you how to
travel to still other places in the system. For example, you can go to the part of the
system that establishes the current date.

Do that now, by typing a D on your keyboard. You should note that the FILER
prompt line goes away and a new message appears. This means that you are no
longer “at the level of the FILER”, but have moved to the level where changing the
date is possible. The new message is

DATE SET?! <1..315-<JAN. DEC>~<00,,99>
TODAY IS 31-JAN-81
NEW DATE 7

Notice that at this level there is no prompt line that gives you any clues as to how
to move to another level in the Pascal system. Instead you are asked to do
something. namely, change the date from 31-JAN-81 (or whatever actual date
appeared on your screen) to today’s correct date.

The top line on your screen tells you the format: anumber from 1to 31, ahyphen,
a 3-letter abbreviation for the month, another hyphen, and a 2-digit abbreviation for
the year. Now type today’s date on your keyboard. You're allowed to make
typographical errors, by the way. If you catch them while typing on the line the
errors occur in, you can correctthem right away. Just press the left-arrow key (at the
right end of your keyboard) enough times to move the cursor (the solid rectangle of
light on the screen) to the beginning of the error. Then retype the entire part of the
line you backspaced over. Make a few mistakes right now and fix them by this
method.

When you are satisfied with your answer to the “NEW DATE?” question, enter it
into the computer by pressing the RETURN key, at the right end of your keyboard.

Now, at what level of the system are you? As usual, the top line of the Pascal page
tells you where you are. You have now left the date-changing level and returned to
the FILER.

Let's see whether or not you succeeded in changing the date. Type D again. Does
the screen text give the correct date? If you made a typing error before and failed to
fix it, now is your chance to change the date again. If the date is okay now, just
answer the question by pressing the RETURN key.

Again you pop back up to the level of the FILER. That is the only place you can go
from the date-changing level.

Next, let's explore some other places you can get to from the FILER. Actually
there are more possibilities than are shown on the prompt line. To see the rest, type a
question mark (?) (Hold down one of the two SHIFT keys while typing the key with
the slash (/) and question mark on it.) This new prompt line appears:

FILER: Wy By Ey Ky My Fy Uy Xy Z [1.11]

See what happens when youtype a V.V stands for “volume” and takes you briefly
toanew level. Itislikethe D(ATE because you can’t go anywhere from it except back

GETTING STARTED 15

up to the FILER, where you came from. But it is different from D, because it simply
does its task, without asking any more questions, and then pops you back to the
level of the FILER. (How can you tell that you are now in the FILER, by the way?)
Notice that the FILER prompt line is the way it used to be before you typed the
question mark.

The task done at the V level is to display a list of various input and output devices
(“volumes”) connected (“on-line”) to Pascal. “CONSOLE:” refers to the display
screen, “SYSTERM:” to the keyboard, and “APPLEQ:” to the name of the diskette in
your disk drive, which the Pascal system refers to as “VOLUME #4”. These details
are not important for now, since you are mainly exploring the system.

Now leave the FILER again and go to the L level by typing an L on your keyboard.
L stands for “list the directory of a diskette”. Once more the FILER prompt line
disappears and the following question appears:

IR LISTING OF 7

Respond by typing APPLEO: (Be sure to use the zero key, not the letter O, and don’t
leave out the colon!). Correct any typing errors by using the left-arrow key and
retyping. Then press RETURN, and watch as thered “IN USE” light on the disk drive
comes on, the drive whirrs, and a table is printed on your TV screen. The table lists
the names of all the files saved on your APPLEQ: diskette, their lengths, and the dates
they were put on the diskette. The bottom line tells how much space is left on the
diskette.

As soon as the listing of the diskette directory is finished, the Pascal system pops
back up to the FILER level and displays its prompt line.

You have seen three of the many ways to go “down” from the FILER to “lower
levels”. But how does one climb back up to the COMMAND level? Well, type a Q and
see.

1-4 MORE THAN MEETS THE EYE

You have already seen that the COMMAND prompt line is too long to fit on the
Apple screen. You had to use the CTRL-A toggle switch to move the Apple window
back and forth from the left half to the right half of the Pascal page in order to see the
whole prompt line. In fact, the COMMAND prompt line contains even more
command names than can fit on the Pascal page. Try the following experiment:

With the COMMAND prompt at the top of your screen, type a question mark. At
this point you should see the transformed prompt line:

COMMAND ! U(SER RESTARTy I(NITIALIZE» H(A

Notice that you are still looking at the left half of the Pascal page. It simply has
something different written on it than it did before you typed the question mark.
(You saw the same thing happen at the level of the FILER when you typed a question

16 APPLE PASCAL

mark there.) Type CTRL-A and check out the right half of the Pascal page. It should
now look like this:

LTy SC(WAFy M(AKE EXEC

Now type another question mark. As before, the question mark changed the text
following the word “COMMAND:”, but it did not move the Apple window. That is why
you are still looking at the right half of the original COMMAND prompt line:

Ky X(ECUTE» A(SSEMy D(ERUG,? [1.11

Type CTRL-A to see the left half of the Pascal page.
You should keep clearly in mind the following differences between CTRL-A and
the question mark:
1. A question mark is legal only at COMMAND level and FILER level.

2. CTRL-A is legal to use in any part of the Pascal system at any time.

3. A question mark causes new text to be written on the top line of the Pascal page,
but does not move the Apple window.

4. CTRL-A causes the Apple window to move from one half of the Pascal page to
the other, without changing any text on the page.

SUMMARY

You have now returned to the top level of the Pascal system, and this is a good
time to stop and summarize your journey. Table 1.1 is a sort of map of the territories
you have explored and their relationships to one another.

GETTING STARTED 17

Table 1.1 Partial table of the command levels of the Apple Pascal system. Each

indented level is reached from the one above by typing the initial letter of

its name.
Exit to escape
from accidental
entry.
F(iler
Q(uit the filer F
V(olumes on line
L(ist the directory RETURN
D(ate setter RETURN
? Show additional commands RETURN
Commands Available at Any Level
CTRL-A Toggle to other half CTRL-A

of Pascal page.

During this introductory session you have found out the following things about

Apple Pascal:

You had to use a special boot-up procedure to get Pascal started on your
computer.

You entered Pascal at the command level, with the COMMAND prompt line at
the top of your TV screen.

You typed a CTRL-A to flip your “window” from the left to the right half of the 80-
character Pascal page and back again.

You left the COMMAND level and went to lower levels by typing one of the initial
letters listed in the COMMAND prompt line.

A new prompt line often appeared when you entered a new level. It either gave
you a list of still further places to go, or it asked you what to do at the current
level.

There was no way to get from a place at one level to another place at the same
level without first going up to a higher level and then coming back down to the
desired place.

18

APPLE PASCAL

You saw how to change the current date, to get a list of the input/output
“volumes” available to Pascal, and to list the directory of a diskette.

You quit the FILER level, by typing a Q, and returned to the top COMMAND level
of the Pascal system.

QUESTIONS AND PROBLEMS

1.

People sometimes refer to the Apple UCSD Pascal system of levels as being
“tree structured”. Which level is like the main trunk? Which level that you have
seen is like a branch? Which levels are like leaves?

. How many branches (or perhaps leaves) are connected to the main trunk? (Get

to the COMMAND level and count the initial letters in the prompt line. Don't
forget to look at both halves of the Pascal page! Now type a question mark (?)
and count some more. Another question mark will get you back to the original
prompt line.)

. What happens when you type letters notincluded in the COMMAND prompt: for

example Q, W, and Z. Type one of them. What does your Apple do?

. What diskette needs to be in your disk drive when you first boot-up Pascal? What

diskette normally remains in the drive when you are using Pascal?

. You are now at COMMAND level. You want to see the name of the diskette that is

currently in your drive. What two letters do you type? At what level do you end up
after that? How do you get back to COMMAND level?

. You have just entered the date-changing level and the computer has asked what

new date to use. You decide to quit without changing the date and instead to get
a listing of the directory of APPLEOQ:. What keys do you press to do this?

. You are at COMMAND level and by accident your finger happens to hit the F key.

How do you correct the error?

. You are currently at COMMAND level and looking at the right half of the prompt

line. You type an F. What do you see? Why? What should you do to correct the
situation?

. When you are at COMMAND level and type an F, the disk drive light comes on

and the disk whirrs and clicks before the FILER prompt line appears. What do
you think is going on? What would happen if the APPLEO diskette was notinthe
drive when you typed F? (Try and find out. Then replace APPLEO:)

SESSION

TWO

TYPING IN PROGRAMS—THE EDITOR

In Session 1 you learned how to boot up Pascal on your Apple computer and how
to move from the COMMAND level down to the FILER and from there to lower levels.
You also learned how to go back up from level to level. In this session you will
explore a new branch of the “command tree:” the EDITOR. Like the FILER, it is
connected to the main trunk, which is the COMMAND level. Your purpose, this time,
is a more productive one than before. To write computer programs you need to type
them into the computer, and for that purpose you will need to use the EDITOR
commands.

SESSION GOALS

The primary goal of this session is to teach you how to enter the text of a program
(or any othertext) into the memory of your computer. In particular, you will enter the
EDIT level of the Pascal system, and from there enter lower levels which will allow
you to type lines of text, make deletions, and make changes. You will leave the EDIT
level, write your text on a diskette, and see how the information is cataloged on the
diskette. You will recover the information on the diskette and move it to the memory
of the computer.

2-1 A WARM-UP EXERCISE

If you are starting this session from a “cold start’—that is, with your computer
turned off, then go to Section 1-1, and read how to boot up Pascal properly.

The COMMAND prompt line should now be visible on the top line of your TV
screen. (If you're trapped in some other part of the Pascal system and cannot seem
to find your way out, just turn off the power and reboot, using the procedure in
Section 1-1.)

Now, leave the COMMAND level and go to the FILER. You do that, yourecall, by
typing an F. Next, type a D and check the current date. (This is always good to do
when you first boot up Pascal.) Change the date if necessary, and, in any case, press
the RETURN key. You're now back at the FILER level.

You've done all that before; now for something new. With the FILER prompt line
on the top of your screen, type an N. N stands for “New” and means you are ready to
enter a new program or some other new text into your computer.

19

20 APPLE PASCAL

One of two things will happen as soon as you press the N key. Either you will see

WORKFILE CLEARED

followed immediately by a return back to the level of the FILER, or else you will see

THROW AWAY CURRENT WORKFILE 7

followed by a halt while the computer waits for your reply. If you get the question, it
means that your particular APPLEO: diskette already has some textonitin the place
where new text will go. This place on the diskette is called the workfile. As a
precaution the computer asks you if you really want to erase the old text. The answer
in the present case is yes, since you are just starting out and you want to enter new
text; so type a Y now.

At this point, no matter which message you got, the computer has carried out
some bookkeeping tasks associated with opening up a clear area in the computer
for you to write new text into. This area in your computer is called your workspace,
and you will be learning more about it during this session.

Your Pascal system is now at the FILER level. Partly for review, take a look at the
directory of your APPLEQ: diskette now. You probably remember from Session 1
how to do this: type an L (for “List the directory”) and then answer the question by
typing the name “APPLEO:” and press the RETURN key. (Be careful to use the zero
key, not the letter O, and to include the colon.)

Note on your screen the presence of several file names that begin “SYSTEM.”
followed by other names. Each of these is the name of one file, or collection of
information, that is presently stored on your APPLEOQ: diskette. Right now, write
down a list of all these names on a piece of paper. You will be referring to it again in
this session.

As soon as the directory listing is complete, the computer returns to the FILER
level. (How do you know that?) It is now time to go to the EDIT level. The natural
thing to do would be for you to type an E, right? Well, do it and see what happens.

You didn’t get to the EDIT level, did you? In fact, when you are in the FILER, the
command E takes you not over to the EDITOR but down a level to the “Extended list
directory” level, which starts off by asking you a question about the diskette. Since
you didn’t mean to enter that level, just press the RETURN key and you will be back
at the FILER.

2-2 ENTERING THE EDITOR

Evidently you can’t go directly from FILER to EDITOR. They are different
branches on the same tree, and you have to go back to the main trunk first. So, quit
the FILER by typing Q.

TYPING IN PROGRAMS — THE EDITOR 21

Now you are back at the COMMAND level, and you see as the first item in the
prompt line the term E(DIT. So, type the E key.

The new prompt line assures you that the you are, indeed, “inthe EDITOR”. Just
below the EDIT prompt line you will see the following line:

NO WORKFILE IS FRESENT. FILE? (<RET: FO

Actually, you are seeing only the left half of the line. Type a CTRL-A and you get the
other half,

R NO FILE <ESC-RET:> TO EXIT)

and then another CTRL-A to get back.

What this extremely mysterious message is trying to tell or ask you is this: first,
there is no workfile on your diskette. (You knew this, of course, since you just
cleared it out.) Second, the question “FILE?” is asking you whether you would like at
this time to move some other disk file into the workspace area in your computer.
(You don't want to do this now, but if you did, you would answer the question by
typing the name of the file.) Finally, it tells you what other things you can type in
response to the “FILE?” question. <RET> means “press the RETURN key” and
<ESC-RET> means, “first press the ESC key (at the left end of the third row of keys)
and then press the RETURN key."

See what happens when you carry out the ESC-RETURN sequence. What level
of the system do you go to?

The reason for the ESC-RETURN option should be clear to you. If you
accidentally press the E key when at COMMAND level, you can recover from the
error by pressing ESC and then RETURN.

Let’'s get back to the editor now (by typing E) and again deal with the “FILE?”
question. The right answer for you now is the simple RETURN key, since you don’t
want to move another file into the workspace, but you do want to use the EDITOR to
type new textinto the workspace. Press the RETURN key and note a new prompt line
at the top of your TV screen.

EDITY ACDUIST C(FY DCLETE FCOIND I(NSRT J

Use your CTRL-A window switch to see the right half:

(MF R(FLACE QUIT X(CHNG Z(AF [1.11

22 APPLE PASCAL

2-3 TYPING IN NEW TEXT

Now you are “in the EDITOR”, with the EDIT prompt line at the top of your
screen. (If you're looking at the right half of the prompt line, press CTRL-A to get
back.) Altogether there are 10 places you can go to from the EDIT level: nine lower
down and one back up to COMMAND level. You will be exploring only two of these
in this session.

To get started, press the | key. | stands for “Insert”, and means thatyou are going
to insert new text into your workspace starting at the position of the cursor (the solid
rectangle of light), which right now is at the left end of the first line after the prompt
line.

Notice that you are no longer at the EDIT level, since the new prompt line says

»INSERTS: TEXT L<RS> A CHARs A LINE]

and on the right half of the Pascal page,

[<ETX> ACCEFTSy +<ESC:> ESCAFES]

Use the CTRL-A key to get back to the left half of the Pascal page.

This prompt line tells you that you are now at INSERT level and tells you the
special meaning that certain keys have there.

For a start, try pressing the ESC key. Notice that you just popped back up to the
EDIT level. Youwould use the ESC key if by accident you had pressed the | key while
in the EDITOR and so had stumbled into the INSERT level. (You will find that the
ESC key is very often used elsewhere in the Apple Pascal system to escape from
accidental key presses.)

Now, press the | key again to reenter INSERT level. Use the alphabetic keys on
your keyboard to type the following phrase:

HOW NOW ELUE COW

Now you will see what the term “<BS>" means in the prompt line: press the left-arrow
key once and notice that the cursor has just backspaced over the Win “COW?”. Press
it repeatedly until itis just over the B in “BLUE”. Now retype the following from there:

EROWN COW

The left-arrow key allows you to delete one character at a time from what you have
typed, so that you can fix errors by retyping.

TYPING IN PROGRAMS — THE EDITOR 23

2-4 MOVING INSERTED TEXT INTO THE WORKSPACE

You already know how to leave INSERT level by using the ESC key. Press itnow
and see what happens. So far, so good; it appears that you have successfully left
INSERT and returned to EDIT. On the other hand, what happened to “HOW NOW
BROWN COW?”, which is no longer visible?

Well, perhaps it is still there, but only at INSERT level. To check that idea out,
type | and see what is there.

It looks bad. In fact, the information you typed (“HOW NOW BROWN COW”)
never got moved into your workspace. That is so because you took the escape route
out of INSERT. But there is another way out. Look again at the right half of the
prompt line:

[<ETX> ACCEFTS, «ESC> ESCAFES]

Since ESC throws away what you just typed, it looks as though ETX might just hang
on to it. Unfortunately, your computer doesn’t seem to have an ETX key. Actually it
does, and you getitby typinga CTRL-C. Firstuse CTRL-A to get back to the left half
of the page. Now, while still in INSERT, type once again:

HOW NOW EROWN COW

Now, instead of ESC-ing from INSERT, type a CTRL-C. (Hold the CTRL key
down while typing C.) Note this time that you returned to the EDITOR but that your
text is still on the TV screen. This fact tells you that the text you typed while at
INSERT level has now been moved into your workspace in the memory of the
computer. Whenever you are at the EDIT level your TV screen displays the top 23
lines of whatever is currently located in the workspace area of your computer’s main
memory.

2-5 THE RESET KEY

There is a prominent key at the upper right corner of your keyboard, labeled
RESET. It is very close to the RETURN key and so is easy to hit by accident. Now isa
good time to stage such an accident. Press the RESET key. (If nothing happens, try
holding down the CTRL key while pressing RESET.)

At this point you see “APPLE][” appear at the top of the screen. Afterallittle disk
activity the message “NO FILE SYSTEM.APPLE” appears in the middle of the
screen. There is only one way out of the present situation. You must turn off the
power and reboot.

Reboot Pascal using the procedure in Section 1-1. Do you think the information
you typed before pressing RESET is still available? Type E to enter the editor. The
signs are not good. You are being asked the same FILE? question you were asked
the first time you entered the EDITOR. Press RETURN to continue entering the
EDITOR.

24 APPLE PASCAL

The empty screen below the prompt line means an empty workspace. Your text s
lost.

Beware of the RESET key! We have deliber-
ately led you into this user trap in a situation in
which you had little text to lose. After entering
300r40lines of new text into your workspace, it
can be enormously annoying to hit the RESET
key while reaching for the RETURN key, and
then have to watch helplessly as your system
comes to a halt.

In order to eliminate this user trap, recent models of Apple Il and Apple Il Plus
computers have been shipped with a slide switch that, in one position, requires you
to hold down the CTRL key while pressing RESET if you want the RESET function.

If your computer required you just now to hold the CTRL key down to activate the
RESET, then you have a recent model, and should leave the slide switch as is. If not,
then you may or may not have such a switch on your computer. You can check by
removing the top of the Apple and looking directly under the keyboard towards the
left side of the top row of keys. If you find a slide switch there, put it in the opposite
position, and replace the top. Now you will need to hold down the CTRL key while
pressing RESET during the boot-up process. A simple RESET will have no effect.
Finally, if you have an older model that has no slide switch, you must be very careful
not to press RESET by accident.

2-6 MOVING THE WORKSPACE TO DISKETTE

At EDIT level, type | to enter INSERT once more. Then type this sentence:

ONE MORE TIME, COW.

Then leave INSERT by means of CTRL-C. You have entered new text and moved it
successfully into the workspace, which is now visible on your screen under the EDIT
prompt line.

At this point, quit the EDITOR by typing a Q. You will note a brief bit of disk
activity, suggesting perhaps that the text in your workspace has now been put on
diskette for safe keeping. On the other hand, your TV screen shows the following:

TYPING IN PROGRAMS — THE EDITOR 25

*QUITS
U(FDATE THE WORKFILE AND LEAVE
E(XIT WITHOUT UFDATING
RCETURN TO THE EDITOR WITHOUT UFDAT
WCRITE TO A FILE NAME AND RETURN
S(AVE WITH SAME NAME AND RETURN

When you arein the EDITOR and type a Q, you go to the QUIT level, which allows
you five options. Since the third one is easiest to deal with, type an R now and see
what happens.

Notice that after another bit of disk activity, you're back in the EDITOR, with your
workspace still intact. So the R key is used to correct the easy mistake of
unintentionally hitting the Q key while in the EDITOR. It lets you get back to where
you were without losing anything.

Next, let's see what happens with the second option. Once again type a Q, to quit
the EDITOR, and then an E, to exit without updating.

The prompt at the top of the screen now is:

*RUITS
THROW AWAY CHANGES SINCE LAST UFDATET

Let's answer the question with Y (for YES) and see what happens. Type a Y.

Now you are back at COMMAND level. Okay, go back to EDIT level again by
typing E.

Well, now you know, to your sorrow, what “exit without updating” means. If you
leave EDIT by the Q E Y sequence of key presses, any changes you made to your
workspace are lost. Your change in the present case was the insertion of a new text
into an empty workspace. The text was stored in the computer until the Q E'Y
sequence; after that it was lost. There is no way to recover it.

Now you see that you should have answered N (for NO) to the question that was
asked you when you typed Q E.

One more try. Continue entering the EDITOR by answering the “FILE?” question
with a simple RETURN. Now type an I. At the INSERT level, type the following
sentence

THIS I8 ITy RROWN COW.

Then leave INSERT by means of a CTRL-C, indicating that you want what you have
typed to be put into your workspace area. (You can confirm your success, so far, by
noting that you are at EDIT level with your new text still on the screen.)

Now quit the EDITOR by typing Q. This time, use the first QUIT option—
“U(PDATE THE WORKFILE AND LEAVE”—by typing a U.

This time you see the word “WRITING” on the second line of your TV screen. A
second later you hear the disk drive clicking a great deal and see a couple of dots
appear on the screen after the word “WRITING”. After that, you see on the next line

26 APPLE PASCAL

the report that “YOUR FILE IS 24 BYTES LONG.” (Each byte holds one character. If
you typed in extra spaces or a RETURN, there may be more than 24 bytes in the file.
An empty workfile contains two bytes, by the way.)

Finally you see the COMMAND prompt appear. (If you get an error message
while writing, it is probably because you are not using your copy of APPLEOQ:, but
instead have a write-protected original. Put in a copy of APPLEOQ: and then return to
this point.)

Things definitely look more promising this time. But as a check, have alook at the
directory of your APPLEQ: diskette. First enter the FILER (type an F), and then enter
the “List directory” level (type an L), and finally answer the question by typing
APPLEO: and pressing RETURN.

Note that at the bottom of the directory listing on your screen is the entry:

SYSTEM.WRK.TEXT 4 1-FEEB-81

(The date will actually be whatever date you entered at the beginning of this session.
The number 4 tells you how many “blocks” of storage space is used on the diskette.)

This directory entry certainly looks like it might correspond to a disk file that
contains the text that was in the workspace area inside the main memory of your
computer. Well, there is an acid test for finding out, and you’ve probably guessed
what it is.

Yes, turn off the computer. That will clear out whatever used to be in its memory.
Now boot up Pascal again with APPLE3: and APPLEOQ: as described in Section 1-1.
Now, with the COMMAND prompt line visible at the top of your screen, enter the
EDITOR again, by typing an E.

This time you get more disk activity than before, you get a new screen message
saying “READING..”, and finally you see the following text on an otherwise empty
screen:

FEDIT? ACDJST C(FY DC(LETE FC(IND ICNSRT J
THIS IS ITs EROWN COW.

You did not get the earlier “NO WORKFILE PRESENT. FILE?” question this time,
because the EDITOR found a file saved on your diskette under the name
SYSTEM.WRK.TEXT and proceeded to read it into the workspace of the memory of
the computer. Then, when you entered the EDITOR the contents of the workspace
was displayed on your screen just below the EDIT prompt line, as it always is.

This result confirms the fact that you must
always leave the EDITOR with a Q U sequence
of key presses if you want changes you have
made to the computer's workspace to be
written out of the computer and on to a
diskette.

TYPING IN PROGRAMS — THE EDITOR 27

The Q E Y sequence leaves the diskette version of the workfile (if any) the way itwas
the previous time it was created or updated.

2-7 AN OVERVIEW OF EDITING

For work with all computers, editing means entering text and changing it. In the
Apple UCSD editing system, you must go to the EDIT level and then to INSERT level
in order to be able to type any text into your computer. Each character that youtype
goes into a part of the computer's memory that is usually called the insert/delete
buffer, or simply the buffer. (A buffer is just computer jargon for a temporary storage
location in memory.)

All of the text you type in goes into the buffer. When you leave INSERT by
CTRL-C, a copy of the buffer contents moves into the workspace. But when you
leave by the ESC route, no copy goes into the workspace.

Once a copy of the text has been moved into the workspace, you again have
choices about what to do with it. If you leave the editor by the Q U route, then a copy
of the contents of the workspace is written on your APPLEO: diskette and saved
there as a file named SYSTEM.WRK.TEXT, destroying whatever was there before, if
anything. But if you leave by the Q E Y route, then no diskette copy is made and
SYSTEM.WRK.TEXT remains as it was before. (In either case, the workspace copy
of the text is destroyed when you quit the EDITOR and go to the COMMAND level.)

Whenever you go from COMMAND level down to EDIT, a copy of the diskette
workfile (in SYSTEM.WRK.TEXT) goes into the workspace. The original version
remains on the diskette.

It is very helpful in working with data in computers to develop a “mental map”,
telling where the data is, and an understanding of the processes that affect the data
and move it from place to place. Time and attention spent on this task will pay off
handsomely. Figure 2.1 at the end of this session is a graphic representation of the
textual data and the editing processes that lie at the heart of what you have been
doing in this session. You should study it closely and see whether your ideas about
how things work coincide with the picture presented there.

There is more to learn about the use of the EDITOR than you have seen here.
Later sessions will add to your present knowledge. But everything that follows will
be based upon the mental picture you are beginning to develop now.

SUMMARY

Figure 2.1 shows how the text that you type into the computer moves from the
keyboard into the buffer, into the workspace, out to the diskette workfile, and back
into the workspace. It also shows how the text in each place can be lost. Note that
text on the diskette is most permanent, and least likely to be erased by accident, and
is in the only form that survives when the computer is turned off.

28 APPLE PASCAL

WORKFILE

(on diskette)

Gnter E(ditoD
C)(uit EDITOFD
U(pdate)

WORKSPACE

(in computer)

leave I(nsrt
by CTRL-C

BUFFER

(in computer)

Q(uit EDITOR,
E (xit w/o update

turn off power

ESC from I(nsrt,
Q(uit EDITOR

turn off power

enter l(nsrt,
type text

Figure 2.1 Main flow of text information in the Apple Pascal system.
Rectangular boxes are places where text goes. Curved boxes are
processes for moving text from place to place. New text moves from
bottom to top, beginning on the keyboard and ending in a disk file.
Processes that flow to the right destroy information.

TYPING IN PROGRAMS — THE EDITOR 29

Itis a good idea to look over Figure 2.1 carefully as a review of this session. Try to
identify each path inthe diagram with processes that you have carried out during the
session. You have, in fact, done every process shown in the figure.

Table 2.1 is an extension of the level structure diagram of Table 1.1. In each of the
sessions, new levels and details will be added. The purpose is to remind you
constantly of the underlying control structure of Apple Pascal.

Table 2.1 Amplified table of the command levels of Apple Pascal. Those features
studied in this session are shown in bold face type.

Exit to escape
from accidental

entry.
E(ditor ESC RETURN or Q E
Q(uit editor and R
U(pdate workfile
E(xit with no update
R(eturn to editor Q
Text Changing Commands
I(nsert text ESC
CTRL-C (Normal exit.)
F(iler
Q(uit the filer F
N(ew workfile RETURN
V(olumes on line
L(ist the directory RETURN
D(ate setter RETURN
? Show additional commands RETURN
Commands Available at Any Level
CTRL-A Toggle to other half CTRL-A

of Pascal page.
RESET Attempts reboot of Pascal

During this session you have done and seen the following things.

® You used the FILER’s N(EW instruction to clear out the workspace in your
computer.

® You found that you couldn’t go directly from the FILER to the EDITOR, but had
to go up to the COMMAND level first.

30

APPLE PASCAL

You entered the EDITOR and answered the “FILE?” question with a RETURN,
indicating that you intended to type new text into the workspace.

You entered the INSERT level under the EDITOR, typed in a line of text, used the
back-arrow key to modify it, and CTRL-C to move it into your workspace and
return to the EDITOR.

You used the Q U sequence to quit the EDITOR and to update the diskette copy
of the workfile.

You entered the FILER, listed the directory of APPLEQ: and saw there a new file
named “SYSTEM.WRK.TEXT".

You turned off the power to your computer, turned it back on, rebooted Pascal,
entered the EDITOR, and discovered that your workfile had been read back into
the computer workspace from APPLEQO..

You discovered ways to get out of any level that you might have gotten into by
accident.

You experienced the RESET key user trap.

QUESTIONS AND PROBLEMS

1.

List every key-press needed, starting at COMMAND level, to create a disk copy
of a workfile containing only the word PASCAL. (Assume that APPLEO: does not
have a SYSTEM.WRK.TEXT file on it at the start.) Hint: it will take exactly 12 key-
presses, counting CTRL-C as one keypress.

. Suppose you start at the FILER level and that APPLEO: contains a SYS-

TEM.WRK.TEXT file. Explain what happens as each of the following keys is
pressed in sequence:

LAPPLEO:RETURNNYLAPPLEO:RETURN

. When you enter the EDITOR from the COMMAND level, under what conditions

do you get the “FILE?” question? When do you not get it? In the latter case what
text do you see on the screen under the EDIT prompt line?

- You are at COMMAND level and want to go to the FILER. By accident you press

the E key. What happens? How do you recover if you get the “FILE?” question? If
you don’t?

. You are at EDIT level and accidentally press the | key. Can you recover? If so,

how?

. You are at EDIT level and accidentally press the Q key. Can you recover? If so,

how?

TYPING IN PROGRAMS — THE EDITOR 31

7.-You are at EDIT level and mean to quit and update the diskette copy of your
workfile area. By accident you type Q E. Can you recover? If so, how?

8. You are at EDIT level and mean to quit without affecting the contents of
SYSTEM.WRK.TEXT on APPLEQ:. But by accident you type Q U. Can you
recover? If so, how?

SESSION

THREE

WRITING, RUNNING, AND CHANGING PROGRAMS

You probably feel a bit misled at this point. We said at the beginning of the last
session that you would learn how to type programs into your computer. In fact, all
you succeeded in doing was entering some text about a certain brown cow! Don’t
feel cheated, however; the method you have just learned applies equally well to the
text of a program as it does to the text of a letter to your mother. In fact, whenyou are
in the EDITOR and entering text or changing it, your computer has no way of telling
whether the information you have entered is a program or some otherkind of text, or
whether the text makes sense or not. The EDITOR is like a tape recorder; it takes
dictation but it asks no questions about meanings or correctness.

While using the EDITOR in the last session, you found that the text you typed on
the keyboard existed in the computer system in three distinct locations:

= In the buffer. It goes directly there from the keyboard when you are at INSERT
level within the EDITOR.

m In the workspace in the computer's main memory. A copy goes there when you
leave INSERT level by means of a CTRL-C.

® On the APPLEO: diskette in the workfile named SYSTEM.WRK.TEXT. It goes
there when you leave the EDITOR by means of the Q U (quit and update) option.

You also saw that if you turned off the electrical power, rebooted Pascal and
entered the EDITOR, then a copy of the contents of SYSTEM.WRK.TEXT was
automatically moved into your workspace, ready for additional editing.

SESSION GOALS

In this session you will use what you now know about the EDITOR to enter the
text of a Pascal program into the workspace. After that, you will leave the EDITOR,
run the program, and see what it does. Then you will reenter the EDITOR, make
changes to the program text, leave the EDITOR, and run the changed version. You
will learn how typing errors are reported to you, and how to use INSERT and
DELETE commands in the EDITOR to fix them. You will learn about the WRITE and
WRITELN procedures, about the division of programs into lines of text, and about
other divisions caused by semicolons and words such as BEGIN and END.

33

34 APPLE PASCAL

3-1 CLEARING THE WORKEFILE

If the COMMAND prompt line is not visible at the top line of your TV screen, turn
off the power and reboot Pascal according to the procedure in Section 1-1. Change
the date to today’s date whenever you reboot, using the procedure of Section 1-3.

Type an E and enter the EDITOR. After a little disk activity, the EDIT promptline
appears at the top of your screen. What you see under it will depend upon the
current state of the workfile on APPLEQ: . If you did the problems at the end of
Session 2, then SYSTEM.WRK.TEXT will contain the last workfile that you wrote
there. If you didn’t do them, then it will contain the text

THIS IS ITs EROWN COW.

(If for some reason, you are starting this session with a copy of APPLEQ: that
doesn’t have a workfile on it, then you will see the FILE? question under the EDIT
prompt. If so, just press the RETURN key.)

When you entered the EDITOR, the contents of your APPLEOQ: workfile, whatever
it is, was copied into the computer’s workspace, and is now visible on your screen.
Since you will be entering a Pascal program into the workfile soon, you must clear it
out before doing anything else. There are several ways to do this, but the following is
the one that you should always remember, since it is usually cleaner and more error-
free than others.

Leave the EDITOR by the Q E option. (Quit and exit without changing the
contents of SYSTEM.WRK.TEXT.)

From COMMAND level, type F and enter the FILER. Then type N, for a new,
empty workfile. The computer responds by asking

THROW AWAY CURRENT WORKFILE 7

Type Y. (This means: yes, throw away disk file SYSTEM.WRK.TEXT.
Incidentally, if your APPLEOQ: diskette does not contain a workfile, you won't be
asked the above question.)

Type Q and E. (Quit the FILER, go momentarily to COMMAND level, and then
enter the EDITOR.)

With the final step you see the EDIT prompt line reappear at the top of your
screen, telling you that you have returned to the EDITOR.

As you become more familiar with the various parts of the Apple Pascal system,
you will stop thinking of each key-press as a separate command and will start
grouping them into functional phrases. For example, the seven key-presses you
used just now might be grouped into these three phrases:

WRITING, RUNNING, AND CHANGING PROGRAMS 35

leave the EDITOR
clear the disk workfile
go back to the EDITOR

oMo
mZm
_<

After you have done that sequence of phrases adozen or so times, don’t be surprised
if you start to remember the entire set of key-presses as a single phrase:

QEFNYQE leave the EDITOR, clear the
disk workfile and return to the EDITOR.

This way of thinking about the command system comes naturally from use and
experience. It is probably not a good idea to try to memorize particular key-press
phrases before you have experience using them. They are hard to remember until
they take on meaning from repeated use.

3-2 ENTERING PROGRAM TINY

You are now back in the EDITOR, which is asking you the question it always asks
whenever you first enter it and it fails to find a file named SYSTEM.WRK.TEXT on
your diskette. The question just below the EDIT prompt line is

NO WORKFILE IS FRESENT. FILE? (<RET FO

on the left half of the Pascal page, with the continuation on the right half.

Press the RETURN key, indicating that you know that there is no workfile on your
diskette and that you intend to type one into the computer. (You did this several
times in Session 2, by the way, so it should be familiar.)

To get text into the workspace, you must first enter INSERT level. Do this by
typing L.

With the appearance of the INSERT prompt line at the top of the screen, you are
at last ready to type a Pascal program into the computer. Use your keyboard to enter
the following four lines of text:

FROGRAM TINY#

REGIN

WRITELN (7HOW NOW EROWN COW’)
END .

36 APPLE PASCAL

Read the program over carefully, making sure that it is an exact copy of the above.
There must be a space after PROGRAM, a semicolon after TINY and period after
END. The left and right parentheses are typed by holding down a SHIFT key while
typing the 8 and 9 keys, respectively. Be sure to use single quotes (apostrophes)
around HOW NOW BROWN COW. A single quote is a SHIFT-7. If you find any
typing errors, use the left arrow key to backspace to the first such error. Then retype
everything from there to the end.

Your next step is to leave INSERT so that the text of your program is copied from
the buffer into the workspace. Recall that you do that by typing CTRL-C. Do it.

You did it correctly if you see the EDIT prompt line appear above the four lines of
your program.

The next step is to leave EDIT so that the text of your program is moved from the
workspace area of the computer's main memory into the APPLEO: diskette workfile
SYSTEM.WRK.TEXT. Recall that you do that by typing Q U. Do it.

3-3 RUNNING PROGRAM TINY

Finally you are at the COMMAND level again, with the following information on
the screen:

COMMANDI! E(DITy R(UNy FC(ILEy C(OMFy LCIN

At long, long last, you are ready to run your program. Type R (for Run) and watch
your screen.
During the next 14 seconds the following events take place:

1. The screen clears and the word
COMFLILING. s

appears on the top line. At the same time there is a good deal of disk activity.

2. The following two lines appear near the middle of the screen:

AFFLE FASCAL COMFILER [C1.11
[ORCUN

WRITING, RUNNING, AND CHANGING PROGRAMS 37

3. Quickly after the above, the following four lines are added

TINY L 1923 WORDS]
kA 2
3 LINES
SMALLEST AVAILAELE SFACE = 1923 WORDS

If you don’t see the above lines on your screen but instead see the report of an
error on the last line, type E, and press the spacebar. This puts you back in the
EDITOR with your cursor near the error. Then type Q E F N Y QE, and start over
at Section 3-2.

4. After a pause of a second or two, the screen clears and the word

RUNNING. ..

appears on the line just below the top.

5. Almost immediately after that, the following text appears
HOW NOW RROWN COW

6. Quickly, thereafter the COMMAND prompt line reappears and disk activity
comes to a halt.

You have successfully run your first Pascal program. There were two major
phases to the process: compiling, which was marked by the first three events above,
and running, which included the fourth and fifth events.

You probably noticed the word TINY on the screen during the compiling phase.
That is the name you gave to your program in the first line of its text. The message on
the screen tells you that the computer is now working on your program in a process
called compilation—a translation from the Pascal language into a language more
nearly like the one used by the hardware in your computer.

After compiling TINY the computer begins the second phase, the running of the
compiled program. During this phase you probably recognized the words “HOW
NOW BROWN COW?" as being the same as the words between single quotes in the
third line of your program:

WRITELN (/HOW NOW EROWN COW‘)

You have probably guessed that the WRITELN statement, when the program was
run, caused the text between single quotes to be written on your TV screen. In a
moment you will be able to test whether this is true.

38 APPLE PASCAL

But first, see what happens when you run the program again. The COMMAND
prompt is at the top of the screen now. Type R again.

Notice that the process is a lot shorter and simpler this time. It takes only four
seconds from start to finish. There are none of the activities that before were
associated with the appearance of the “COMPILING...” message on the screen.

Type R again. The process is repeated and again takes the same four seconds. It
appears that compilation occurs only once in order to get a program ready to run,
and after that, is not part of the process. Indeed, that is true.

You may be wondering where the compiled version of your program is located.
Enter the FILER, type L (for List directory), and answer the question

DIR LISTING OF 7

with APPLEOQ:. (Use the zero key, and don’t forget to include the colon.) Press
RETURN to enter the diskette name.

Notice near the bottom of the directory listing on your screen a new entry with
the name SYSTEM.WRK.CODE. This file was not on your diskette when you
examined it in the last session. The new file was put on your diskette by the Pascal
compiler (itself also a file on APPLEQ:) and it contains the translated version of
program TINY. Itis this code file that is run by the computer after compilation ends.
Once the code file has been created, there is no need to compile the text file again
until you make a change in it. Type Q to quit the FILER.

3-4 CHANGING THE PROGRAM

Now that you see how to enter and run a Pascal program, you can begin to
explore the language itself. For a start, let's confirm our hunch about the WRITELN
statement by changing the text between single quotes, and seeing what happens
when you run the changed version. Type E to enter the EDITOR.

As usual, the workfile SYSTEM.WRK.TEXT is copied from diskette into your
workspace, which is displayed on your screen beneath the EDIT prompt line. Note
carefully where the cursor (the solid white rectangle) is located now.

Type the right-arrow key a dozen or so times; then try the left-arrow a few times.
Those keys give you character-by-character control of the position of the cursor. If
they were the only ones, it would take a lot of keystrokes to move the cursor through
a long program. See what happens when you type CTRL-L and CTRL-O several
times. You have line-by-line control as well as character-by-character control.
Experiment also with the spacebar and the RETURN key. Notice in particular how
RETURN differs from CTRL-L. CTRL-O and CTRL-L move the cursor up and down
respectively while the RETURN key moves the cursor to the beginning of the next
line. (You might want to label the O key with an up-arrow and the L key with adown-
arrow.)

Later on you will discover other ways to move the cursor aboutin a program, but
right now nearly all of your use will be by means of the six cursor control keys you
have just been experimenting with. Now let’'s see why one would want to move the
cursor anyway.

WRITING, RUNNING, AND CHANGING PROGRAMS 39

Use cursor control keys to place the cursor on top of the H in HOW in the third
line of the program text. Our goal here is to change the words between single quotes
in the WRITELN statement so that we can see what happens when the program is
run again.

Next, type D. This is a new EDITOR command, and it causes this prompt line to
appear on the left half of the Pascal page:

SDELETE! « > <MOVING COMMANDS: [<ETX: TO

and the rest on the right half

DELETEy <ESC> TO ARORTI

Press the right-arrow key 17 times. This is the basic deletion operation, and you
will use it a great deal when making program changes. You have now deleted “HOW
NOW BROWN COW”,

What if you delete too many chacters by accident? All is not lost. Press the right-
arrow key a few more times. Now press the left arrow the same number of times.
Deleted characters are remembered by Apple Pascal’s screen editing system, justin
case you need them again. This is true even when you delete past the end of line. Try
it.

Other cursor-positioning keys can also be used when in DELETE. Try typing
CTRL-L. Then back up with CTRL-O. Next, try RETURN and follow by CTRL-O.
These keys permit rapid deletion of many lines of text, and also provide recovery
from typing errors when you delete more than you intended.

Sometimes while editing text it is easiest to recover from a succession of typing
errors by starting over. You can do that while in DELETE in the same way that you
did when you wanted to escape from INSERT in Session 2: Press the ESC key. Now
you are exactly where youwere when you firstentered DELETE, with the cursor over
the H in “HOW”.

Now that you know how to delete text, let’'s get back to the job of replacing “HOW
NOW BROWN COW'” by something else in the WRITELN statement. Type D to enter
DELETE. Press the right-arrow 17 times until the cursor is over the second single
quote. Type CRTL-C. CTRL-C means that you really do wantthe change to happen,
just as it meant with INSERT.

At this point “HOW NOW BROWN COW?” has disappeared from your workspace,
you're back at EDIT level, and your cursor is positioned over the second of the two
single quotes. Now it is time to insert the change.

Type | to enter INSERT. Suddenly it looks as if the right end of the line, *’)”, has
disappeared. Actually it's just been moved over to the extreme right end of the
Pascal page. Type CTRL-A and have a look. Type CTRL-A again to get back.

Now in INSERT, type M O O and then CTRL-C. You have, by this two-step
delete/insert process, replaced “HOW NOW BROWN COW” by “MOOQO”. The display
on your screen at this moment should look like this:

40 APPLE PASCAL

EDITS ACDJST C(RPY LDCLETE F(IND I(NSRT J
FROGRAM TINY:$

BEGIN

WRITELN (MO0’

ENI .

(If it doesn’t look like this, use D and/or | to change it until it does look like this.)

The procedure you have used for changing
text has three steps:
1. At EDIT level, move the cursor to the first
character of the text to be changed.
2. Delete it. (D right-arrow(s) CTRL-C)
3. Insert new text. (I text CTRL-C)

You will become very familiar with this process because you will be using this
procedure again and again to correct errors and make other changes in your
programs.

3-5 RUNNING THE CHANGED PROGRAM

To run this changed version of TINY, type Q U R. This phrase means “Quit the
EDITOR, update SYSTEM.WRK.TEXT, and runiit.” It is one of those key “phrases”
you will become very familiar with through use.

Notice this time that the computer goes through a longer set of activities,
signaled by the appearance of the COMPILING... line on your screen. After awhile
the word RUNNING... appears across the top of your screen, quickly followed by
MOO. Immediately after that the COMMAND prompt appears.

You have changed your first program and succeeded in running it. The new
version was similar to the old one except thatitcaused MOO instead of HOW NOW
BROWN COW to appear on the screen when it was run. /[t seems reasonably clear
that the effect of WRITELN in Pascal is, at a minimum, to cause the text enclosed in
single quotes to appear on the TV screen when the program is run.

Another observation that you may have made is that whenever you type a new
program or change an old one and then run it, Pascal goes through the compilation
step before running the program. When there have been no changes, it skips
compilation and starts running immediately.

WRITING, RUNNING, AND CHANGING PROGRAMS 41

3-6 DEALING WITH TYPING ERRORS

Let's introduce a typing error into the program and see what happens. Suppose,
for example, that you had typed a space, after PRO in the first line. What would have
happened? Let’s find out.

Leave COMMAND level and enter the EDITOR by typing E. Move the cursor over
to the Gin PROGRAM. Insert aspace before it by the sequence: | spacebar CTRL-C.
Your screen should now look like this:

EDITS AMNJST CCFY DCLETE FCOIND I(NSRT J
FRO GRAM TINYS

REGIN

WRITELN ("MO0O’)

ENL,

Now use the Q U R phrase to run the changed program. Watch carefully to see what
happens and when. Here's what you should see on the screen when all activity
comes to a halt.:

COMFILING,. ..

AFFLE FASCAL COMFILER [1.1]
0

PRO <
LINE Oy ERROR 18! «SF3>(CONTINUE)»s <ESC3H(

On the right half of the Pascal page you will find the the rest of the bottom line:

TERMINATEy E(DIT

This situation is an example of a compile-time error detected in your program.
The next to the last line on your screen shows you the precise point in the text of
your program where the compiler discovered that there was aproblem. The lastline
on the screen tells you which text line it occurred in, (line 0 is the first line), what its
error number is, and what your options are at this moment. The three options are

® <SP>: Press the spacebar to continue trying to compile the program.
m <ESC>: Press the ESC key to quit and go back to COMMAND level.

s E(DIT : Type E to go to the EDITOR and fix the error.

42 APPLE PASCAL

The first option is always risky, since one real error usually misleads the compiler
into thinking that there are several others when in fact there may not be. The second
option is there so that you can get out of the RUN command if you accidentally
touched the R key while at COMMAND level. You want the third option.

Type E now and notice that, after some disk activity, your workfile is back in the
workspace and is visible on the screen. Instead of the EDIT prompt line, the
following error message appears:

ERROR IN DECLARATION FART. TYFE <SFX

Sometimes these messages are right to the point and quite helpful. At other
times, they may seem obscure and even misleading. Of one thing you may be
certain, however: an error of some kind exists at or before the point in the text where
the cursor now is positioned. Your job is to find it.

In the present case, you know what the error is, because you introduced it
yourself. Press the spacebar to continue entering the EDITOR. The cursor is
properly located for you to delete the erroneous space. Type D right-arrow CTRL-C.

Check the program to make sure it works again: type Q U R and watch. (If you get
additional error messages, go back to the EDITOR, make changes as above so that
the program matches exactly the program text at the end of Section 3-4, and run
again.)

The last page or two of this book contain a list of all Compiler Error Messages.
Later, when you get more experienced, you can use them during the compiling
process to decide whether to continue compiling or to return to the editor.

3-7 TEXT LINES IN PASCAL PROGRAMS

You have seen two slightly different versions of a Pascal program. The text of the
program was four lines long. You may have concluded (especially if you know other
computer languages) that this particular arrangement of textinto lines isimportant.
Let’s find out.

Enter the EDITOR. Put the cursor just to the right of the last character in the first
line. Type the sequence: D right-arrow CTRL-C. You have just succeeded in
deleting the RETURN character that you typed when you originally entered thatline
of the program. Now, type this sequence: | space CTRL-C. This sequence has
inserted a blank space between the end of the original firstline and the beginning of
the second line. In effect, you have substituted a space character for the RETURN
character.

The program is now only three lines long. Repeat the above process, moving the
cursor just beyond the new end of the first line, deleting the RETURN and inserting a
space. Do it a third time. At this pointyour program is one line long. It looks like this:

FROGRAM TINY: BEGIN WRITELN ¢/MOO‘) END.

WRITING, RUNNING, AND CHANGING PROGRAMS 43

(If it doesn’t look exactly like this, keep using INSERT and DELETE to edit it until it
does.)
Next try to run this new version by typing Q U R. Now what do you think about the
importance of lines in the text of a Pascal program? Enter the EDITOR again.
To reinforce this fact, let's change the program so that it looks like this:

FROGRAM
TINYs
BEGIN
WRITELN
(/M007)
ENIt,

To make each change, first move the cursor to the character that will begin a new
line, and then type | RETURN CTRL-C. In this way you insert a RETURN character
just before the T in TINY, the B in BEGIN, etc.

Check it out when you have finished and make sure that it looks exactly like the
above. Now type Q U R and see whether this version will run.

As a final experiment on line divisions, go back to the EDITOR, move the cursor
to the G in the first line, and insert a RETURN there by means of the | RETURN
CTRL-C sequence. The program should look like this:

FRO
GRAM
TINYS
REGIN
WRITELN
(“M007)
END.

Now type Q U R and see the result.

Your last experiment ended with a compile-time error. In fact, the error number
here is the same one you got when you inserted a space into the word PROGRAM .
Type E and then press the spacebar to return to the EDITOR.

On the basis of all these experiments, can you formulate a theory as to wheniitis
legal and when it is illegal to use RETURN in the text of a Pascal program?

3-8 WRITE AND WRITELN

For the following experiments you will need a clear workfile. Make sure the EDIT
prompt is at the top of your screen. Then type the sequence QEFN Y QE. You did
this at the start of this session for the same purpose. Think through the meaning of
each command in this seven-letter sequence.

44 APPLE PASCAL

Continue entering the EDITOR now by answering the “FILE?” question with a
RETURN, indicating that you will type in the workfile. At this point you are in the
EDITOR with an empty workfile, ready to enter new text. Study the following
program:

FROGRAM WRITEITs;
CWRITE ¢HOW
© WRITE (/NOW “)i
, WRLTE (* BROWN)3
 MRITELN (’ cou'> '
ENDS, -

As you type it into the computer’s buffer, make certain of the following points:
1. The program name, WRITEIT, contains no spaces.
2. There is a semicolon after the program name.

3. The third line is indented two spaces. You use the spacebar to create the
indentation. After that, the next three lines automatically start at the same
indentation.

4. Three semicolons separate the four program statements between the words
BEGIN and END.

5. The seventh line is “undented” two spaces, back to the left margin. You do this
by typing the left-arrow key two times before typing END.

6. The program ends with a period.

Type |, and then enter the program above. Move the text into your workspace by
typing CTRL-C. (If you discover an error in the text at this point, move the cursor to
the error and fix it with INSERT and/or DELETE operations, just as before.)

Type Q U R to run WRITEIT. As usual with new or changed programs, the
process starts with the “COMPILING...” message. If you typed the program
correctly there are no compile-time error mesages. (If you do get an error message,
then type E followed by spacebar to get back to the EDITOR and fix the error.) After
the run is complete, your screen should look like this;

COMMAND? E(DITy RC(UNs FC(ILEy C(OMFs LCIN
RUNNING. ..
HOW NOW EROWN COW

WRITING, RUNNING, AND CHANGING PROGRAMS 45

It looks as though WRITE and WRITELN have very similar meanings in Pascal.
They both display text on the screen. Perhaps you are wondering what caused these
four words to appear, strung together on asingle line on your screen. Two ideas may
have crossed your mind:

1. One possibility is that WRITE and WRITELN may be different. WRITELN may
start a new line after writing its text on the screen, but WRITE may not.

2. Another possibility is that the semicolon after WRITE may prevent a new line
from being started. Absence of a semicolon may cause a new line to begin.

The first idea can be tested easily by changing WRITE to WRITELN in the
program. Type E to enter the EDITOR. Use the cursor control keys to place the
cursor immediately after the Ein “WRITE (NOW’);”. Enter INSERT by typing|l. Type
L N and CTRL-C.

The result should be that you have changed WRITE to WRITELN in that line of
your program text and are back in the EDITOR. The screen now looks like this:

*EDITS ACDJST C(FY D(LETE FC(IND I(NSRT J
FROGRAM WRITEITS
REGIN
WRITE (‘HOW ‘)3
WRITELN (/NOW “)3¥
WRITE (‘BROWN ‘)37
WRITELN (7COW’)
END,

Run the program by typing Q U R. As before, you see on the screen a report of
progress during the compiling phase and, if there are no errors a quick transition to
the running phase. At the end, your screen looks like this:

COMMAND?! ECDITy R(UNy FC(ILEy CC(OMFy LCIN
RUNNING. o«

HOW NOW

EROWN COW

As you now can see, the first explanation is correct. The big difference between
WRITE and WRITELN is that WRITELN ends its writing activities on the screen by
issuing a RETURN, so that the next characters sent to the screen will start on a new
line at the left margin. WRITE does not issue a RETURN.

3-9 ABOUT THOSE SEMICOLONS

Just because the first explanation is correct doesn’t necessarily mean that the
second is totally wrong. Even if WRITELN does start a new line, it could also be
necessary to use a semicolon after WRITE to keep it from doing the same thing.

46 APPLE PASCAL

More investigation is in order, and the obvious experiment is to see what happens
when you delete a semicolon after WRITE.

Enter the EDITOR. Move the cursor to the semicolon after the first WRITE in the
BEGIN/END block. Delete it. Be sure to exit from DELETE by CTRL-C, so as to
move the change into your workspace when you return to the EDITOR. The program
should look like this:

FROGRAM WRITEITS
EEGIN o
WRI] ow)
WRITELN ¢’/NOW ‘)%

WRITE (/BROWN ‘)%
WRITELN ¢’COW’)
END.

From the EDITOR, type Q U R to run the program. What happened? What is
ERROR 67? Type E to return to the EDITOR with the text of the error message at the
top of your screen. It says

ILLEGAL SYMEROL (FOSSIERLY MISSING ‘3’ ON

on the left half of the Pascal page, and

LINE AROVE) . TYFE <SFx

on the right.

The hint in this case is correct. The semicolon you deleted is the missing
semicolon referred to in the error message. Evidently the second explanation is
wrong. In fact, the semicolon is required.

In Pascal, semicolons are required between
any two statements. They signify the end of one
statement and the beginning of another.
Semicolons have no effect on the way WRITE
and WRITELN work.

The contrast betweeen the role of the semicolon and the RETURN in the textofa
Pascal program is very sharp. You may, without breaking any of Pascal’s
arammatical rules, type a RETURN quite literally anywhere you would have typed a

WRITING, RUNNING, AND CHANGING PROGRAMS 47

space. But you have little freedom regarding semicolons. Whenever two consecu-
tive statements occur, a semicolon must occur after the first statement and before
the second. (The semicolon itself may be preceeded or followed by spaces, or for
that matter, RETURNSs.

If you have read the last paragraphs very carefully, then you are probably
thinking that we must be mistaken. The original version of WRITEIT worked fine
even though it seemed to be lacking a couple of semicolons. There was no
semicolon between BEGIN and the first WRITE, and there was none between the
WRITELN and END. The rule about always needing semicolons between statements
must be wrong, you might think.

We agree that a semicolon is not needed after BEGIN nor before END. We insist,
however, that a semicolon must separate consecutive statements. You've probably
already guessed the way out of this apparent contradiction: BEGIN is not a
“statement” in Pascal, nor is END. In fact, you should think of BEGIN and END as
nothing more nor less than punctuation marks. BEGIN is like an opening bracket
and END is like a closing bracket. Statements within brackets need to be separated
by semicolons, but no semicolons are needed to separate the statements from the
brackets themselves.

The above paragraph is so important that you probably should reread it now and
make certain that you understand it. You will see many BEGINs and ENDs in this
book and it is essential that you stop thinking of them as a kind of statement. It is
natural to think of them as statements if you are familiar with other languages, since
programmers almost always put BEGIN or END on a line by itself. Recall, however,
the other main fact about the text of a Pascal program: arrangement into separate
lines is left up to the author. BEGIN and END, therefore, really aren’t either lines or
statements. They are only words that stand as major punctuation marks of the
language.

If this concept seems strange to you, keep
reminding yourself that a RETURN in the text
of a program has exactly the same
significance—no more and no less—that a
space character has. Either one may be used
whenever it is necessary to separate the words
of the language from one another.

As you have already seen, the same program can be typed as one long line, with
no RETURNS, or as a vertical column of single words and symbols, with no spaces.
Since the structure of the program is not based on text lines, Pascal has to have
other means of grouping and separating statements: hence BEGIN, END,
semicolons and other formatting devices that you will learn later.

48 APPLE PASCAL

The structure of Pascal programs is not
based on text lines.

If you're like us, you will at first find it a nuisance to have to keep remembering to
put a semicolon between Pascal statements. You will forget to do it once in a while
and will get a sometimes obscure error message at a later point in the program. On
the other hand, you will also come to recognize that the meaninglessness of text
lines in Pascal allows you more stylistic freedom when you write than other
programming languages offer.

We have used that stylistic freedom here to adopt an indentation scheme in
program WRITEIT. The four statements between BEGIN and END were each
indented two spaces. These additional spaces were not required by Pascal. /t is a
general rule that whenever a space (or RETURN) is required, two or more spaces (or
RETURNSs) may be used. If you went back to the original version of WRITEIT in
Section 3-7 and deleted all the indentation spaces, the program would still be
grammatically correct and would produce the same results. We have used
indentation here specifically to call attention to the fact that the four indented
statements form a group that is bracketed between the opening BEGIN and the
closing END. As programs become longer they become more complex and harder
to read. A consistentindentation style will help you to read and understand what you
(and others) have written.

By way of example, and to conclude this session, turn now to the Introduction of
this book and remind yourself of the way program DICEGAME looked in its neatly
indented form. Well, folks, here is another version of the same program, and it is as
grammatically correct as the one in the Introduction. Let's hear it for style!

FROGRAM DICEGAMEUSES AFFLESTUFF3CONST
HELLFREEZESOVER=FALSE; VAR DICEsFOINT?
INTEGER#FROCEDURE ROLLEM(VAR TO0SS:
INTEGER) BEGIN TOSS?!=RANDOM MOD 6+17
TOSS:=TOSS+RANDOM MOD 6+13WRITELNC

‘YOU ROLLED A “sTOSS)ENDFBEGIN REFEAT
ROLLEM(DICE)yCASE DICE OF 711:WRITELN
C'YOU WIN/)#293120WRITELNC’YOU LOSE")5
4y359698y9y10IBEGIN FOINT!=DICE;REFEAT
ROLLEM(DICE)UNTIL(DICE=FPOINT)OR(DICE=7)}
IF DICE=FOINT THEN WRITELNC(’/YOU WIN‘)
ELSE WRITELNC/YOU LOSEZ)END END UNTIL
HELLFREEZESOVER ENID.

Anybody who claims that Pascal is good because it forces clear writing is
obviously overstating the case. The truth is that Pascal is defined in such away as to
allow clear writing, where some other languages would treat as errors any attempts
at indentation or using blank lines.

WRITING, RUNNING, AND CHANGING PROGRAMS 49

At the present time your computer is still halted, waiting for you to attend to the

missing semicolon error it found in your program. Press the spacebar to get fully
into the EDITOR. Then quit the EDITOR and return to the COMMAND level.

SUMMARY

During this session you have done and seen the following things:

You used EDIT/INSERT to enter the text of a short Pascal program.

You used the Q U R sequence to run the program.

Running was a two-phase process: compiling, or translating Pascal into a
language closer to the one used by the hardware, and running the translated

program.

You found that the compiler translates the diskette text file of the programinto a
code file on the same diskette.

You used EDIT/DELETE followed by EDIT/INSERT to make changes in the
program.

You used the arrow keys, CTRL-L, CTRL-0O, space and RETURN to position the
cursor in the workfile prior to insertion or deletion.

You introduced typographic errors into a program and saw how compile-time
errors are reported and repaired.

You discovered that it is illegal to put a space in the middle of the word
PROGRAM.

You discovered that division of Pascal program text into lines is permitted
anywhere a space is allowed.

You also saw that consecutive Pascal statements must be separated by
semicolons, and that the words BEGIN and END serve to bracket statements
into functional blocks.

You used WRITE and WRITELN in programs to generate textual output on your
screen.

50 APPLE PASCAL

Now let's also update the tables that mark your progress into the level structure
of the Apple Pascal system.

Table 3.1A Amplified table of the EDITOR levels of Apple Pascal. Those features
studied in this session are shown in bold face type.

Exit to escape
from accidental
entry.

E(ditor ESC RETURN or Q E
Q(uit editor and R
U(pdate workfile
E(xit with no update
R(eturn to editor Q

Cursor Moving Commands

Right-arrow (Move cursor right)

Left-arrow (Move cursor left)

CTRL-L (Move cursor down

CTRL-O (Move cursor up)

RETURN (Move cursor to beginning
of next line)

Spacebar (Move cursor to next
character)

Text Changing Commands

I(nsert text ESC
CTRL-C (Normal exit)

D(elete text ESC
CTRL-C (Normal exit.)

WRITING, RUNNING, AND CHANGING PROGRAMS 51

Table 3.1B Amplified table of other command levels of Apple Pascal. Those
features studied in this session are shown in bold face type.

Exit to escape
from accidental

entry.
F(iler

Q(uit the filer F

N(ew workfile RETURN
V(olumes on line

L(ist the directory RETURN
D(ate setter RETURN
? Show additional commands RETURN

R(un the program in workfile
Commands Available at Any Level

CTRL-A Toggle to other half of CTRL-A
Pascal page.
RESET Attempt reboot of Pascal

Table 3.2 These are the five Pascal words that you used in Session 3. A similar
table will appear at the end of all future sessions.

BEGIN END PROGRAM
WRITE WRITELN

52 APPLE PASCAL

QUESTIONS AND PROBLEMS

1. If you are at the COMMAND level, what keystrokes are necessary to clear out the
workfile?

2. You have just finished entering a Pascal program, have pressed CTRL-C to
move the program from the input buffer to the workspace in Apple’s memory.
What key presses are required to run the program?

3. If you are at the EDIT level, give the keypresses necessary to display a list of the
files on APPLEQ: if you don’t wish to update the workfile.

4. As far as Pascal is concerned, how are spaces and RETURNSs treated?
5. If you are in the EDIT/INSERT mode and press the ESC key, what will happen?

6. A program line reads

WRITELN (/FAT CAT’)

If you have just entered EDIT level, explain how you would change the line to
read

WRITELN (‘RBAD! CAT’)

7. Suppose your workspace contains the lines

HI DIDDLE DIDDLESY

THE CAT AND THE FIDDLE.
THE COW JUMFED OVER THE
MOON .

Explain how you would delete the lines

THE CAT AND THE FIDDLE
THE COW JUMFED OVER THE

from the workspace.

WRITING, RUNNING, AND CHANGING PROGRAMS

8. What is wrong with the following program?

FROGRAM ZIF7#

REGIN
WRITELN (‘ZIPFITY’)
WRITELN (/000 7)
WRITELN (/DAH’)

END

9. What will happen if the following program is run?

FROGRAM QUOTES$

BEGIN
WRITE (’/IT WAS THE ‘)7
WRITELN (‘BEST OF TIMESs’)j
WRITE (“IT WAS THE)7
WRITELN (‘WORST OF TIMES.’)
END.

53

10. Write a program to print out the following letter patterns on the screen of your

computer.

AB
ABC
ABCD
ABCDE

SESSION

FOUR
GENERATING SOUND

You have now reached an important plateau in your understanding of Apple
Pascal. The dozen or so single-letter system commands that you have learned are
the ones that you will use 90% of the time in the future. You used them in the previous
session to write, compile, run, change, recompile, and rerun your first Pascal
program. You will be doing this sequence of activities again and again throughout
the rest of this book. Your programs will get longer. They will contain new types of
statements. They will exercise new features of the language and the computer. But
the sequence, write — compile — run — change — recompile — rerun, will be with
you forever.

One of the problems you have probably already encountered is that the screen is
often filled with information that comes from different sources. Did a particular line
of text show up there because you typed it in? Or, perhaps the Pascal operating
system generated the line: or perhaps the line came from the compiler or from the
program when it was run. Perhaps lines from all these sources are on the screen at
the same time. Not to worry, however, since after a few hours of practice at your
computer you will automatically sort out where information on the screenis coming
from.

The reason for bringing this issue up is that it gets in the way of learning about
Pascal. It is enough for you to concentrate on the details of Pascal without having to
worry about what process generated a display on the screen. Consequently, we will
avoid the problem as much as possible in this session by using the sound and game
paddle features of the Apple. The main advantage of this strategy is that it will always
be perfectly clear where information is coming from.

Be certain that the two game paddles are properly installed in your Apple
computer before starting this session.

SESSION GOALS

You will mainly review the elements of Pascal programs learned in Session 3and
extend this knowledge to programs that use loops. The sound and paddle controls
will be used to demonstrate output, input, and the loop process. As part of an on-
going process you will review the manner in which Pascal programs are entered,
modified, and run.

55

56 APPLE PASCAL

4-1 A SHORT REVIEW

If your computer is on, turn it off. Boot up Pascal using the procedure described
in Section 1-1. You should now see the COMMAND line at the top of the screen.
Remember that it's always a good practice to set the current date after booting up
Pascal. Press F to move into the FILER. With the FILER prompt at the top of the
screen, press D to call the date-setting facility. The date previously recorded on
APPLEQ: will be displayed. It may not be the current date. Follow the instructions,
set the current date, and press RETURN. When you do so, you are returned
automatically to the FILER. Type Q to return to COMMAND level.

In the next section you will enter a new program into the workfile. There may or
may not be a program currently in SYSTEM.WRK.TEXT on APPLEO:, buttobe sure,
let's see what's there before destroying it in preparation for a new program. (This is
always a good practice.)

From COMMAND level, type E to enter the EDITOR. As you probably recall, one
of two things always happens when you do this. If there is no SYSTEM.WRK.TEXT
file on the diskette, you will see the “NO WORKFILE PRESENT. FILE?” message.
But if SYSTEM.WRK.TEXT does exist, then the system copies it into the workspace
of your computer and displays the top 23 text lines on your screen. |f you are using
the same APPLEOQ: diskette that you were using in Session 3, then the second
situation will occur, and you will see the last program that you wrote. Because you
won’t be using it any more, you may get rid of it as shown below. (If, on the other
hand, you picked up a different APPLEOQ: that has text on it that should not be
destroyed, now is your chance to start over with the right diskette.)

Recall that from the EDITOR the seven-letter sequence for clearing out
SYSTEM.WRK.TEXT is Q EF N Y QE. If the file needs to be cleared, type the letters
now. As we suggested in Session 3, it will help you to group the letters into three
short phrases:

QE Quit the EDITOR
FNY From FILER, get new workfile
QE Quit FILER, enter EDITOR

Whichever state your APPLEOQ: diskette was in originally, it is now cleared of file
SYSTEM.WRK.TEXT, and the “FILE?” question is now on your screen and waiting
for a reply from you. Press RETURN.

4-2 GENERATING SOUND

After a few moments the EDIT prompt line will appear at the top of the screen.
Since you want to type in a program press | to switch into the insert mode. You
should see the INSERT prompt line at the top of the screen.

GENERATING SOUND 57

Examine the short program below. Note the vertical spacing between parts of the
program and how the indentation emphasizes the structure of the program. As you
type in this program, check each line carefully before going on. If mistakes are
noted, remember that you can use the left-arrow at the right side of the keyboard to
move the cursor back to the location of the error. Then just retype the remainder of
the line correctly. Okay, now type in the program.

PROGRAM SOUND?

UBES
AFFLESTUFF $

 NOTE (20s 100}

You should see the program on the screen exactly asshown above. The INSERT
prompt line should still be at the top of the screen. Press CTRL-C to move the
program into the workspace of the computer memory. After this is done, you should
see the EDIT prompt line at the top of the screen.

The program isn't much more complicated than the ones you worked with in
Session 3, and seems reasonably transparent. The program name is SOUND which
reflects the purpose of the program. This is the first program you have seen which
has the “USES block”. APPLESTUFF is a collection of special procedures. It is
stored in in APPLEO:SYSTEM.LIBRARY. The APPLESTUFF procedure used in this
program is named NOTE. When the program is compiled, the computer brings
APPLESTUFF into the program. If a program does not use any of the special
procedures, there is no need for the APPLESTUFF declaration.

Now you can try out the program. Remember that at the EDIT level, Q causes the
computer to leave the EDITOR and prompt you about the workfile. U causes the
workfile to be updated on the diskette APPLEO:. Finally R starts the compilation and
execution (“running”) process. You can type the three letters all together and the
computer will pick them up as needed. Press the keys Q U R.

After a few seconds of disk whirring and various messages flashing on the screen
during compilation, the program will run. If there were no errors in the program, you
should have heard a single tone (approximately middle C) that lasted a little more
than a second. Really not too exciting, right? Have patience: more impressive results
are close by.

(If you didn’t get the results described above but instead got an error message
during the compilation process then there must be a typing error in the program. If
so, press E to call the EDITOR and then press the spacebar. Find the error and
correct it with the delete and insert operations you learned about in Session 3.)

It should be clear to you that the source of the tone was the command NOTE
inside the program. No action on your part was required after you signaled the
computer to run the program. Type R and listen again. There were no compiler
messages this time, since you had made no changes between runs. Now rapidly type

58 APPLE PASCAL

three Rsin arow Notice that the computer stores up the extra commands and carries
them out in sequence.

Now let's see what happens when you change the numbers in parentheses after
NOTE and then rerun. Type E to enter the EDITOR. Move the cursor to the “2” in
“20”. Change it to “3” by the usual delete/insert sequence: D right-arrow CTRL-C 13
CTRL-C.

At this point you should be back at EDIT level. Type Q U R, and listen.

Return to the EDITOR and repeat the editing steps in the previous two
paragraphs, changing “100” to “200”. Run (Q U R) the new version. What is the
effect? What do you think the two numbers in the NOTE statement control?

4-3 ANOTHER WAY TO MAKE THE SAME SOUND

Go to the EDITOR again and use delete/insert steps to change the program text
so that it looks like this:

FROGRAM SOUNDj;

USES
AFFLESTUFF 5

VAR . f
- FITCHs DURATION ! INTEGER?

BEGIN
PLTOH 23050 1
DURATION = 2005
NOTE (FITCHs DURATION)
ENI,

Perhaps the easiest way to insert the two lines that begin with VAR is to use the
following procedure:

1. Place the cursor just to the right of the semicolon after APPLESTUFF.
2. Type | to enter INSERT mode.

3. Press RETURN once to start a new line.

4. Press RETURN again to enter a blank line.

5. Press the left arrow twice to adjust the indentation.

]

. Type VAR and press RETURN.

GENERATING SOUND 59

7. Press the spacebar twice (not the right arrow) for indentation.

8. Type

FITCHy DURATION ¢ INTEGERj

and do not press RETURN.
9. Type CTRL-C to exit INSERT mode.

Notice that in this method, you start out on the line above the place you want to
insert one or more new lines. The first thing you insertisa RETURN. Thenyou enter
the new line or lines but do not put a RETURN at the end of the last line.

You can use the same strategy to insert the two new lines after BEGIN, starting
with the cursor just to the right of BEGIN. (Only a single RETURN is needed at the
start this time, since you are not inserting any blank lines here.) Finally, you can use
delete/insert to change the numbers “30, 200" into “PITCH, DURATION".

Type Q U R to run the new version. (If there is acompile-time error, type E, press
the spacebar, and make the necessary changes.) What do you hear? Type R and
listen again.

If all went well, then you heard exactly the same sound in the new version that
you did with the immediately previous one. This may not seem like progress toyou,
since we made the program larger and didn't get anything new out of it. Yet it is
progress, for we have separated the program into two distinct phases. The first
phase assigns numerical values to the words PITCH and DURATION. The second
phase uses these values, whatever they are, to make a sound. In just a few minutes
you will see how to make use of this separation to produce many different sounds by
changing the values of PITCH and DURATION.

In Pascal, PITCH and DURATION are called variables. The first thing you
probably noticed about them is that each variable name occurs in two different
sections in the program: in the text line after the word VAR, and again in the
BEGIN/END block.

Let's see what happens if you delete DURATION from the line after VAR. Return
to the EDITOR, move the cursor to the comma before the “D” in DURATION, and
delete “, DURATION”. Leave DELETE mode (CTRL-C) and run (Q U R) the changed
program. What happened?

Toward the middle of your screen you should see the compile-time message
“LINE 20, ERROR 104”. Type E to return to the EDITOR. The error message at the
top of the screen says

UNDECLARED IDENTIFIER. TYFE <8F>x

The cursor is just to the right of the word DURATION in the BEGIN/END block of the
program. Note that the compiler did not make a similar complaint about the word
PITCH.

60 APPLE PASCAL

You have just discovered a basic grammar
rule of Pascal: except for a few words already
known to the Pascal compiler, you have to
define all words before you use them.

Words such as BEGIN, END, WRITELN, and NOTE are known to the compiler.
But variable names, such as PITCH and DURATION, are not. Pascal requires that
you declare them in the VAR section of your program. (VAR is an abbreviation for
VARIABLE.) If you forget to do so, the compiler reminds you of any undeclared
identifiers. “Identifier” is just a fancy word for “name”, by the way.

Fix the error as follows. Press the spacebar. Use CTRL-0O and arrow keys to move
the cursor just after PITCH in the VAR section. Reinsert “, DURATION”. Exit with
CTRL-C.Make certain that your program is now exactly the same as it was at the
beginning of this section. (If you're in doubt, run it. Then return to the EDITOR.)

There is nothing magical about the names we have used here for our variables.
You have immense freedom of choice, and it is a good idea to use that freedom to
create meaningfull names. It may seem cute to use variable names like FOO or
SALLY, but you'll have a tough time understanding your program a week later.

Although your freedom here is great, it isn’t total. Try the following experiment.
With the cursor to the right of DURATION, type | and insert “, BEGIN”. Leave the
INSERT mode via CTRL-C. The VAR block now looks like this

VAR
FITCHs DURATIONsy REGIN ¢ INTEGER?

RUN (Q U R) the program. Again you get a compile-time message that says
“LINE 16, ERROR 2”. Type E and read the error message on your screen. Notice that
the cursor is located just after BEGIN in the VAR block. The slightly obscure
message

IDENTIFIER EXFECTED

means that the compiler did not want you to use BEGIN as a variable name. Why
not? Because BEGIN is a word that has a special meaning in Pascal. We say thatitis
a reserved word.

Altogether, Apple Pascal has 41 reserved
words, and you may not use any of them as a
variable name. If you do, then you will get the
“IDENTIFIER EXPECTED” message in the
VAR block where you first try to define it.

GENERATING SOUND 61

Appendix C has a complete list of Apple Pascal reserved words. It also gives
more detailed rules governing legal names for variables. If you start your names with
letters and follow with letters and numbers, omitting spaces and punctuation marks,
you'll be okay, except for a rare time when you accidentally pick a name that is the
same as a reserved word.

In order to call your attention to the reserved words we will adopt a printing
convention in all future programs shown in this book. The convention is that all
reserved words will be printed in bold face type. As you see them again and again,
you will be reminded to stay away from them as variable names.

There is another class of words that sometimes can lead to problems. If you are
still looking at the error message, press the spacebar. From the EDIT level, delete
BEGIN from the VAR block. Now change PITCH to WRITELN in the VAR block and
in both places in the BEGIN/END block. When finished, the program should look
like this

PROGRAM SOUND$

USES
AFFLESTUFF §

VAR
WRITELN» DURATION ! INTEGER#

BEGIN
WRITELN (= 30}

DURATION (= 2004
NOTE (WRITELNy DURATION)
END.

You have used WRITELN several times before, but certainly not in this context.
WRITELN is a procedure normally used to send information to the screen. Will the
computer accept WRITELN as a variable? Well, let’s find out. Leave the EDITOR and
run the program. Were you surprised at the the results?

Okay, now return to the EDITOR and insert the shaded line below so that the
BEGIN/END block looks like this

BEGIN
WRITELN $= 303

WRITELN (WRITELN)#
DURATION = 200%
NOTE (WRITELNy DURATION)

END.

Well, you saw that before this last change, the program ran and the computer
didn’t complain about the use of WRITELN as a variable name. Will the computer
complain now that WRITELN is being used both in its usual function (to send
information to the screen) and also as a variable name?

62 APPLE PASCAL

Leave the EDITOR and run the program. This time things didn’t work out as well,
right? ERROR 59 means error in variable. The problem arose when after you
declared WRITELN as a variable you then attempted to use WRITELN as a
procedure to send information to the screen.

In addition to the reserved words in Pascal (which you cannot use as variable
names) there is another class of words which may be used for variable names under
some circumstances. This new class is called built-in words, and WRITELN isin this
class.

The computer understands these built-in words so they do not have to be
declared in a VAR block. You may declare and use a built-in word for another
purpose provided you don’t subsequently try to use the word in its usual meaningin
the same program. WRITELN is acceptable as a variable name provided you don’t
then try to use it to send information to the screen in the same program.

We will not print the built-in words in Pascal programs in bold face type as we will
for reserved words. Instead, beginning with this session, a listing of the built-in
words encountered to date (as well as the reserved words) will be given in each
session summary.

As already pointed out, you do have great freedom in the choice of variable
names, but you do not have license. Even though it is possible to use built-in words
for variable names, the prudent programmer will not do so.

Press E and the spacebar to get to the EDITOR. At the EDIT level, use the
insert/delete modes to put the program back in it's original form. When finished,
your program should once more look like this

PROGRAM SOUNLD#

USES
AFFLESTUFF §

4-4 THE THREE PROPERTIES OF VARIABLES

Let's see what this program has told us so far about variables. First, they have
unique names, such as PITCH and DURATION. Second, they can be given values by
statements such as these:

FITCH = 304
DURATION = 200

GENERATING SOUND 63

Statements like these are called assignment statements because they assign values
(like 30 or 200) to variables (like PITCH or DURATION). About half the statements in
most programs are assignment statements, by the way. The symbol “:=" is called the
assignment operator. You may not put a space between the colon and the equal
sign, but you may put spaces on either side of the assignment operator. The only
thing that you may put on the left side of the “:=" isthe name of avariable. The single
exception to this rule is discussed in Session 6.

Variables have a third and final property, and the following experiment will show
you what it is: Return to the EDITOR if you're not already there. Change the PITCH
assignment statement to read

FITCH = 30.5

and then run the program.
This tiny change resulted in compile-time error number 129. Type E and check
the error message. It says

TYFE CONFLICT OF OFERANDS. TYFE <SF:

The cursor is at the right side of the semicolon after the PITCH assignment
statement. ’

What you have discovered by this experiment is that variables have something
called type, and furthermore, that in most situations type conflictis an error. Notice
the word INTEGER in your VAR block. It means that you have declared your PITCH
and DURATION variables to be of type integer. (An integer is just a whole number,
such as 5, 239, or -8723.) But once you get into the BEGIN/END block of the
program, your first assignment statement tries to give PITCH a value that is not an
integer but is a decimal fraction. A decimal fraction in Pascal is said to be of type
real. So you are trying to assign a thing of one type to a variable of another, and
Pascal calls this a type conflict.

The important things to remember about
variables are their three properties: name, type
and value. Name and type must always be
declared in a VAR block, and value is assigned
somewhere in the BEGIN/END block.

64 APPLE PASCAL

4-5 INPUTTING VALUES FROM OUTSIDE THE PROGRAM

In this section you will begin to see the real power of being able to refer to values
by their names without knowing what the values actually are. In the programs you
have written so far, the variables PITCH and DURATION were assigned numeric
values within the program itself. In this section you will write new programs in which
PITCH and DURATION have no known values at the time you write the program.
Instead, they take on values when you run the program, by a process called input.

Here is a preliminary example of the sort of thing we're talking about. If you’re still
looking at the error message, press the spacebar and enter the EDITOR. Then use
INSERT and DELETE to change your program so that it looks like this:

PROGRAM SOUND

USES
AFFLESTUFF §

VAR
FITCHy DURATION @ INTEGERG#

BEGIN N
PITCH 3= FADDLE (0)4
DURATION ¢= FADDLE (1)
NOTE (PITCH» DURATION)

END.

You have made two editorial changes. In the first line of the BEGIN/END block
you deleted the numerical value 30.5 and inserted the expression “PADDLE (0)”. Be
sure to use zero in the parentheses following PADDLE and not O. In line two, you
changed the value 200 to the expression “PADDLE (1)”.

AtEDIT level, type Q U R and run the program. Listen to the sound. Now turn the
knobs on the two paddles connected to your computer to new settings. Type R and
run the program again. Do this five or six more times varying one paddle control
knob at a time.

What is going on? How is the sound being controlled? Why did it change?

To get more information about whatis happening, let's add one new statement to
the program. Go back to the EDITOR and put the cursor just to the right of the
semicolon in the DURATION assignment statement. Type I. Insert a RETURN and
this new line:

GENERATING SOUND 65

Since you put a RETURN at the beginning of the line you don’t need another one at
the end. Exit via CTRL-C. The new BEGIN/END block should look like this:

BEGIN
PITCH $= PADDLE (0)#
DURATION = PADDLE (1)%
WRITELN (PITCHy ’ ‘y DURATION)#
NOTE (PITCHs DURATION)
END.

Most of the spaces in the program are cosmetic and are used to make the block
easier to read. The spaces inside the quotes in the WRITELN statement do have
meaning however, as you will see.

Now run the program via Q U R. Watch and listen. Change the paddie knob
settings and type R a few more times.

Each time you ran the program you heard a sound and you also saw a pair of
numbers appear on your screen near the top. The numbers were separated by three
blank spaces. The numbers changed when you changed paddle settings. What is
going on?

Well, you already know from Session 3 that WRITELN causes text to appear on
your screen, but this is a new situation. In Session 3 you used a statement such as

WRITELN (/HOW NOW BROWN COW’)

and found that the text between quotes appeared on the screen. Now you are using a
different version of WRITELN:

WRITELN (FITCH» ~ vy DURATION)

There are no quotes around the words PITCH or DURATION. Furthermore, these
words are the names of variables.

What you have discovered is that when you used an unquoted variable nameina
WRITELN statement, the current value of that variable was written on the screen.
(The three spaces between quotes in WRITELN are also written literally on the
screen and act as a separator between the two numbers.

So now you know how those numerical values got on your screen. But how did
they change from run to run? Well, you did change the paddle settings; and your
program does have the new words PADDLE (0) and PADDLE (1). Evidently, the
answer is tied up in these facts, and here it is. In Apple Pascal, PADDLE is an
example of a function. A function is very much like a variable in that it has aname, a
type and a value. The difference is that a variable can only get its value by having the
value assigned to it explicitly, as in

FITCH (= 20

66 APPLE PASCAL

whereas a function gets its value by some process of its own which depends upon
the way the function is defined. The value of the PADDLE function depends on two
things: first, whether the number appearing in parentheses after the word PADDLE
is a zero or a one; second, the physical setting of the corresponding paddle control
knob. Whenever during the run of a program, a statement containing the PADDLE
function is reached, the computer inputs one of the two paddle controls attached to
your Apple and the function returns a value, as we say, corresponding to the setting
of the knob.
In your program, therefore, the statement

FITCH (= FADDLE (0)

first causes the computerto inputanumber corresponding to the setting of the knob
on paddle zero. Then the function takes on a value equal to that number. Finally, that
value is assigned to the variable PITCH.

You may have wondered where PADDLE was defined since its name does not
appear in the declaration section (the part of your program that precedes the
BEGIN/END block). PADDLE, like NOTE, is defined in APPLESTUFF. Both are
brought into your program by the compiler as a result of the USES block at the
beginning of your declaration section.

Here is a good way to think about the difference between a variable and a
function. Think of a variable as a p/ace in the memory of the computer where an item
of data is stored. Whenever you put avariable name on the left side of an assignment
statement, it means that you want to put some new data in the place in memory
corresponding to that variable name. Whenever you put a variable name on the right
side of an assignment statement or in a WRITELN statement or almost anywhere
else, it means that you want the variable name to be replaced by the data currently
located in that variable’s place in the memory of the computer.

In contrast, think of a function as a process that produces an item of data
whenever the function name appears in a program statement. With this idea in mind,
you will see that it would be wrong to use the statement

FADDLE (1) $¢= FITCH

in a program, since PADDLE is not a p/ace in the computer memory, and so cannot
have a value assigned to it by an assignment statement. Another way of saying the
same thing is that PADDLE can give a value to something else, but PADDLE cannot
be given the value of something else. Instead, the value of PADDLE or any other
function is determined strictly by the rules that define it. In Session 6 you will learn
how to define functions of your own and see how they work in more detail.

GENERATING SOUND 67

A variable is a place in memory where an
item of data is stored. A function is a process
that produces an item of data.

What is the type of function PADDLE? Well, you didn’t get any “type conflict”
error when you ran the program, so PADDLE must be of the same type as PITCH,
which is of type integer. You may have also noticed that the values it returns are not
negative. In fact, PADDLE returns only integers from zero through 2565.

4-6 THE FOR STATEMENT

Let’'s explore this program a bit more. You probably got tired of typing R again
and again while experimenting with different paddle settings. Well, Pascal has a
statement that will save you that bother. Go back to the EDITOR. Compare the
present version of your program with the following one:

PROGRAM SOUNID#

USES
AFFLESTUFF §

VAR
FITCH, DURATIONs COUNT ¢ INTEGERG$

BEGIN
FOR COUNT ¢= 1 TO 500 DO
.~ BEGIN e e
FITCH = FADDLE (0)}#
DURATION $= FADDLE (1)%
WRITELN (COUNTy * %y FITCHy 7y DURATION)}?
NOTE (FPITCHy DURATION)
END
END.

You will be changing your program to look like this new version. There are
several steps to this editing job, but you’ll soon see the advantage. First, insert “,
COUNT” in the VAR block. Second, with the cursor to the right of BEGIN, inserta
RETURN, two spaces of indentation, and the two new lines

FOR COUNT := 1 TO 500 DO
CREOING

68 APPLE PASCAL

without pressing RETURN after the last line. Then CTRL-C out of INSERT mode.
You will discover that the indentation of the next four lines is all wrong. Fortunately,
there’s an easy fix for that. At EDIT level, press RETURN to get the cursor to the next
line. Type A to enter ADJUST mode. You will see a new prompt line:

FADJUST? L (JUST RCOJUST CCENTER <“LEFTsRIG

on the left half of the Pascal page and on the right half,

HTy UF sy DOWN-ARROWS: CXETX> TO LEAVE]

Now is a good time to experiment a bit with the ADJUST commands. Press the
right-arrow and left arrow keys a few times. Use the right-arrow key enough times to
position the line so that it is indented a total of six spaces from the left margin.

At this point, the first line is properly indented and you're still at ADJUST level.
Now comes the magic. Type CTRL-L. The second line is now correctly indented.
Type CTRL-L twice more. The third and fourth are also okay. Finally, type CTRL-C
and go back to the EDIT level with the new indentations still intact. (You can’t ESC
out of ADJUST, by the way, but you can always undo anything you've done by using
the arrow, CTRL-L and CTRL-O keys before pressing CTRL-C.)

Move your cursor to the “P” in PITCH in the WRITELN statement. Insert
“COUNT,’ ’,” and type CTRL-C. (Your WRITELN statement is now more than 40
characters long, so part of it is on the right half of the Pascal page.)

Move the cursor just beyond the closing parenthesis of the NOTE line. Now type |
to enter INSERT. Press RETURN. Press the left-arrow twice, insert “END” and
CTRL-C back to the EDIT level once more.

At this point you have made all the changes and your new version should look
exactly like the one printed at the start of this section. Check it carefully. Fix any
errors.

Now you are ready to run the new version. Put the paddles close by and type Q U
R. After compilation, play with each paddle knob while the program runs. What is
happening?

First, there are many text lines on the screen, and three numbers on each line.
The first number in the line starts at 1 and increases by one on each successive line.
Each of the other two numbers stays about the same from line to line if you do not
touch the paddle controls. Otherwise they change in response to the paddle
settings.

Now is agoodtimeto find out which paddle is which and to mark them. Turn both
knobs all the way to the left (counterclockwise). If the program has stopped running,
type R again. Notice the zeros in columns two and three, and the silence. Slowly turn
just one of the knobs, watch the numbers, and listen. If the second column of
numbers starts changing and you start hearing sounds, then you are holding paddle
zero. But if silence remains and the third column of numbers starts changing, you
have paddle one. Mark the paddles correctly now.

GENERATING SOUND 69

Run again with both paddies all the way to the left. Turn paddle one to the right
slowly until the number in column 3 is around 50. Now turn paddle zero to the right
very slowly and listen.

You probably heard a sequence of steadily increasing pitches at first, while the
numbers went from one to 50. After that the pitches were fairly random.

Turn paddle zero to the right until the pitch value (column two) is about 30. Turn
paddle one all the way to the left and then very slowly to the right.

As soon as the duration value (column three) changed from zero you heard a
sudden shorteningin the length of time the note was held. Small numbers gave short
notes and larger ones gave longer notes, except that zero gives the longest note.
(You may also have found that the duration numbers suddenly got small again
despite the fact that you continued to turn the knob slowly to the right. Don’t worry
about that now. It happened because your program input the value from paddie one
right after paddle zero. The results can be inaccurate unless more time is allowed
between the two inputs.)

4-7 GRAMMAR RULES FOR THE FOR STATEMENT

Now let's see what these new program features have done. You've probably
guessed that the FOR statement is the cause of these 500 lines of output to your
screen. Its effect is exactly the same as if you had duplicated the original four-line
BEGIN/END block 500 times. Instead of having to duplicate the program block
many times, all you have to do is put the block in a FOR statement, sometimes also
called a FOR/DO loop, or simply a FOR loop.

The FOR statement has this general form:

FOR variable := initial-value TO final-value DO statement

where “statement” after DO, means either a single statement (called a simple
statement) or else a block of statements preceded by BEGIN and followed by END.
In Pascal, a BEGIN/END block is also called a compound statement. As before, you
should think of BEGIN and END as giant brackets that enclose the compound
statement. A compound statement can contain other compound statements within
it.

Now let’s see how the FOR loop works. It starts out by setting the value of the
variable equal to the initial value (COUNT :=1in your program). Next it tests to see
whether the variable has already exceeded the final value (500 in your program). If
so, nothing further happens and we say the loop is exited. Otherwise the simple or
compound statement after the word DO is executed once. In your program, it is the
following compound statement that is executed:

BEGIN
FITCH (= FADDLE (0)$
DURATION $= FADDLE (1)3%
WRITELN (COUNT» “ “y FITCHy * “y DURATION) #
NOTE (FITCHs DURATION)
END

70 APPLE PASCAL

Then, one is added to the value of the variable. Finally we /oop back to the top, and
start over, seeing whether the variable has yet exceeded the final value, and then
either exiting or continuing.

In your particular program you can see that the compound statement shown
above must be executed 500 times, since the initial value of COUNT is one and the
final value is 500.

4-8 REFINING THE PROGRAM

You have successfully written the prototype of all computer programs. It takes
input from the outside world. It processes the input, and it generates output. Every
useful program performs these three functions.

In the process of creating the program you have learned how to writea FOR loop,
how to use the PADDLE function to get input values, how to assign those values to
variables, and how to use the NOTE procedure to convert the variables to sound
output.

The next step is to refine the program to make it more usable. You noticed, for
example, that the range of pitch values between zero and fifty gave you a musical
scale, plus silence. Higher values produced random pitches. It would be nicetodo a
little more processing on the input from paddle zero to force the numbers tobe in the
range zero through 50. Let’s see how to do this.

You saw earlier that the PADDLE function always returns values between zero
and 255. One way to keep the PADDLE numbers from being too big is to divide them
by a number bigger than one. For example, if you divided all the PADDLE values by
two, you would get numbers between zero and 127.5. On the other hand, numbers
like 127.5 are not integers, so won't that lead to one of those type conflicterrors you
saw before? Not to worry. Pascal provides a special kind of integer division
operation that first does the division and then throws away the fractional part if there
is any. The operation is called DIV, and the following experiment will show how to
use it.

Enter the EDITOR and insert “ DIV 5” at the end of the first line containing the
PADDLE function, as shown here:

FEITCH (= PADDLE (0) DIV 5%

Quit the EDITOR and run this new version.

As you see, except when you twist the the knob on paddle zero all the way to the
right, PITCH stays within the limits that NOTE needs in order to produce a musical
scale.

Now let's see whether we can fix up that occasional inaccuracy problem caused
by inputting paddle one too soon after paddle zero. This difficulty is one of timing
caused by the way the computer works, not by your program. Get back to the
EDITOR and insert this line immediately after the semicolon of the PITCH
assignment statement:

FOR WAIT := 1 TO 3 DO}

GENERATING SOUND 71

You have introduced a new variable, WAIT, so you must be sure to declare it. AtEDIT
level, move the cursor to the space after COUNT andinsert“, WAIT”. With these two
changes your program should look like this:

PROGRAM SOUNI:

USES
AFFLESTUFF #

VAR
PITCHs DURATIONs COUNTy WAIT ¢ INTEGERS$

BEGIN
FOR COUNT = 1 TO 500 DO
BEGIN
PITCH = PADDLE (0) DIV 5%
FOR WAIT := 1 TO 3 DO%
DURATION (= PADOLE (1)}%
WRITELN (COUNT» ~ ‘y FITCHy ’ sy DURATION)$
NOTE (FITCHs IIURATION)
END
END.

Run it and experiment with paddle one to see whether the durations increase
steadily now as you turn the knob from left to right.

The fix works. But how does it work? What you did was to insert a particularly
simple form of the FOR statement between the two statements that input the paddle
settings. This form of the FOR statement probably looks illegal to you because there
is no other statement at all after the word DO, but only a concluding semicolon. We
said earlier, when we defined the FOR statement, that there always had to be a
statement (either simple or compound) after the word DO. Isn’t there a
contradiction?

No, and if you understand why, then you're in good shape for sorting out some
other seeming contradictions or surprises in the way Pascal is defined. The way out
of this contradiction is simply to recognize that one kind of statement is the so called
null statement—that is, a statement whose text contains no characters. (The idea
may sound silly at first, but then so did the idea of zero when folks were still using
Roman numerals.)

So, in fact, the little FOR statement you just added to the program does indeed
contain a statement after the word DO and before the semicolon. It is the null
statement. You may not see it, but it's there.

Okay, given that it is legal Pascal, what does it do? Well, like your outer loop,
which counts from one to 500, this inner loop counts from one to three. The outer
loop executed its big compound statement 500 times. Likewise, the inner loop
executes its null statement three times each time around the outer loop. /n effect, it
does nothing, three times. You may think that it takes no clock time to do nothing
three times; but if so, you've forgotten that it takes time to do the counting itself. The
WAIT variable starts out with a value of one, and each time through the loop, one
gets added to it and its value gets tested to see whether it has exceeded three. This

72 APPLE PASCAL

all takes time—not much, but enough to let things settle down between paddle
inputs. And that is why the second paddle value is now correct.

Run the final version of your program a few more times. Check out a pitch of zero;
a pitch of one with a duration of one. Compare a pitch of 12 with one of 24, 36, and 48.
What scale does Apple Pascal use?

You may have wanted to stop the program while it was running to inspect the text
on the screen, and then continue execution. Apple Pascal has such a facility. While
your program is running, type CTRL-S. Now touch a few other keys at random (but
not the RESET key!) After a few seconds, type CTRL-S again. The CTRL-S facility
may be used at any level of the Pascal system.

Watch out for this user trap: by accident you type a
CTRL-S without knowing it, and suddenly it appears that
your computer is broken and will not respond to any
keypresses. If this happens, just type another CTRL-S
and continue.

Note that CTRL-S only stops programs that generate output to the TV screen. It
will also stop system programs that generate screen output, such as the EDITOR
and nearly anything else.

4-9 STORING PROGRAMS ON A SEPARATE DISKETTE

The workfile, APPLEO:SYSTEM.WRK.TEXT, is exactly the right place to keep a
program while you are in the process of writing, running, debugging, and changing
it. When you enter the EDITOR, the workfile is automatically loaded into your
workspace for easy editing. When you leave the EDITOR with the Q U option, the
workspace is automatically written back into the APPLEQ: workfile. When you type R
at the COMMAND level, the computer automatically compiles the workfile on
APPLEQ:, stores the resulting code file on APPLEQ:, and then executes the latter.

Because the workfile is such a good place to keep a program during
development, it is also a very bad place to keep a finished program. There can be
only one workfile on APPLEO: and if the completed program remained there it would
be very difficult to work on any other programs without destroying the finished one.
So, you should move a program out of APPLEQ:SYSTEM.WRK.TEXT as soon as no
further work is planned for it. This section will show you how to do that.

You may have noticed in your earlier work that the system files on APPLEO:
occupy about 90 percent of the space on your diskette. In fact, version 1.1 of Apple
Pascal leaves only 32 blocks of free storage out of the 280 block total. Although a
block contains 512 characters (bytes), the shortest possible text file is four blocks
long, and the shortest code file is two blocks long. This means that you will need at
least 6 free blocks on APPLEQ: for both forms of the workfile, even when the program
is only a few dozen characters long. For this reason itis a bad idea to move a copy of
a finished program from the APPLEO: workfile into a new file on that crowded
diskette, even though it is legal to do so.

GENERATING SOUND 73

The following is our recommended method of moving a copy of the APPLEQ:
vorkfile into a new file on a separate diskette. (Other methods exist, but you are
somewhat more likely to make errors if you use them.)

1. Move the APPLEO: workfile into the EDITOR workspace for a visual checkout.
2. Write a copy of the workspace on to a second diskette.

To do this you must already have a Pascal formatted diskette with enough free
space on it to hold the new file. It need not contain any of the system files, however.

For the following steps we will assume that you already have such a formatted
diskette and thatits name is BLANK:, the name that the FORMATTER program gives
to freshly formatted diskettes. If you do not have one, now isagood time toformata
blank diskette, using the procedure specified in Appendix A-3. (If youdo nothavea
blank, you can temporarily use any one of your system diskette copies, such as
APPLES:, to store the workfile copy. In that case, skip the next paragraph, which tells
how to change the diskette name.)

First, let's change the name of BLANK: to one that suggests you will be using the
diskette to store your programs. PROGRAM: is the name we'll use in this
description.

1. From COMMAND level, type F C to enter the FILER and go to the CHANGE level.
The prompt line will read “CHANGE ?”

2. Open the disk drive door. Remove APPLEO: and insert BLANK:

3. Type “BLANK:” and press RETURN. A second prompt line asks “CHANGE TO
WHAT ?”

4. Type “PROGRAM:” and press RETURN. If all goes well, the third line of the
screen will say “BLANK: — — > PROGRAM:”

5. Remove the diskette, now named PROGRAM: from the drive and insert
APPLEO: Use a felt tip pen to write the name on the diskette label.

6. Type Q to quit the FILER.

Incidentally, you can also use the FILER's C(HANGE command to change the
name of a file on a particular diskette. Just add the file name after the colon at the
end of the diskette name when responding to the “CHANGE ?” query. Then type the
new file name in response to the “CHANGE TO WHAT ?” question.

Now that you have a diskette named PROGRAM: let’s see how to move a copy of
your workfile from APPLEO: to PROGRAM..

1. From COMMAND level, type E to enter the EDITOR. This moves a copy of
SYSTEM.WRK.TEXT from APPLEOQ: to the workspace where you can check it
out visually before taking the next step.

74 APPLE PASCAL

2. Type Q to quit the EDITOR. As usual, you must choose a further option at this
point. (You have used the U, E, and R options in the past.)

3. Type W. This means that you want to write the contents of the workspace into a
diskette file. You should see the following screen prompt

FQUITS
NAME OF OUTFUT FILE(ZCR> TO RETURN) --

4. Remove the APPLEO: diskette from the drive and insert PROGRAM: Be sure the
door is closed tightly.

5. Type CTRL-A followed by PROGRAM:SOUND.TEXT followed by a RETURN.
(If PROGRAM: already contained a file named SOUND.TEXT, you would be
asked whether or not to destroy its previous contents.)

6. Type CTRL-A a few times to read both sides of the Pascal page. You are still at
the QUIT level. If all went well you got a message telling how many bytes long
your file was, and you are being asked whether to “E(XIT FROM OR R(ETURN
TO THE EDITOR?”

7. Remove PROGRAM: from the disk drive and insert APPLEO: If you don’t do this
step you will be prompted to do so later.

8. Type E to return to COMMAND level.

You have succeeded in writing a copy of APPLEO:SYSTEM.WRK.TEXT into the
file SOUND.TEXT on your PROGRAM: diskette. Unless you plan some additional
work on the program, this is an excellent time to clear out your workfile.

To clear the workfile from COMMAND level, type F N Y Q, returning to
COMMAND level.

If you did the last step, the old workfile is gone from APPLEO: and a copy is now
on diskette PROGRAM: in the file SOUND.TEXT. It is a good idea now to review all
the above steps and remind yourself what was going on during each one.

4-10 RECALLING PROGRAMS FROM A SEPARATE DISKETTE

Now we come to the other half of the process: getting a file back from another
diskette into the APPLEOQ: workfile for further editing or running. In the following
exercise you will move SOUND.TEXT from the PROGRAM: diskette into the
APPLEO: workfile.

1. From COMMAND level, type F T to enter the FILER and go to the TRANSFER
level. The prompt line at the top of the screen should ask the question
“TRANSFER ?”

GENERATING SOUND 75

2. Remove APPLEO: from the disk drive and insert PROGRAM:, closing the door
tightly.

3. Type PROGRAM:SOUND.TEXT and press RETURN. If all goes well, the next
prompt asks “TO WHERE ?” (If not, you will be told so and will be bounced back
to the FILER level. You probably left off “ TEXT”. Type T and try the transfer
again.)

4. Without changing diskettes, respond to the new prompt by typing APPLE0:SYS-
TEM.WRK.TEXT and pressing RETURN. The prompt line now asks you to insert
APPLEQ:..

5. Remove PROGRAM: from the disk drive, insert APPLEOQ:, and then press the
spacebar. |f APPLEO: already has a workfile on it, you will be asked as a safety
measure whether or not to destroy the workfile. Normally you want to, so would
type Y. If there is no workfile, you will not see the question. In either case you will
know that the transfer was successful when you see the message

FROGRAM: SOUND, TEXT
—== AFFLEQISYSTEM.WRK.TEXT

6. Press Q to quit the FILER. When the COMMAND prompt appears, type | to
reinitialize the system.

7. When the COMMAND prompt reappears, type E and verify the transfer with your
own eyes.

Sections 4-9 and 4-10 call attention to the only serious shortcoming of working
with a single-disk-drive system. On a two-drive system you always have two
diskettes (APPLE1: and APPLEZ2:) in the drives, and each of them has a great deal of
free space left over after thattaken up by the system files. Consequently itisasimple
matter to make a copy of the workfile or to move a copy of another file into that
workfile without having to handle the diskettes.

Bear in mind, however, the fact that while using this book you will only notice this
shortcoming when you decide to move copies of programs back and forth between
the workfile and your program diskette. That doesn’t happen very often.

SUMMARY

During this session you have learned the following new things about Pascal on
the Apple:

® You saw that APPLESTUFF is a collection of built-in procedures located in
APPLEO:SYSTEM.LIBRARY.

® You used NOTE (one of the APPLESTUFF procedures) to generate sound.

76 APPLE PASCAL

® You saw that NOTE needs two values. The first determines the pitch and the
second the duration of the note.

® You learned that variables in Pascal are declared in the VAR block in aprogram.

® You discovered that reserved words in Pascal cannot be used for variable
names.

B You saw that built-in words in Pascal can be used for variable names but the
original purpose of the name is then lost to the program.

® You saw that variables in Pascal have three properties; name, type, and value.
® You used the PADDLE function to provide input to a program.

= You saw that the FOR loop causes the simple, compound, or null statement
following DO to be executed a specific number of times.

® You used the A(djust feature of the EDITOR to adjust the indentation of a
program.

B You used the DIV function to accomplish division with integers.

® You used a FOR loop with a null statement after DO to produce a delay in a
program.

® You used CTRL-S to stop and restart program output to the TV screen.

B You learned how to change the name of a diskette or file using the C(HANGE
function in the FILER.

® You learned how to use the Q W exit from the EDITOR to move a copy of the
workfile on APPLEO: to another diskette.

® You used the TRANSFER function in the FILER to move a program from a
separate diskette to the file SYSTEM.WRK.TEXT on APPLEO:

Tofinish the summary, the tables marking your progress through the Pascal level
structure should be updated to reflect the ideas you have learned in this session.

GENERATING SOUND 77

Table 4.1A Amplified table of the EDITOR levels of Apple Pascal. Those features
studied in this session are shown in bold face type.

Exit to escape
from accidental
entry.

E(ditor ESC RETURN orQ E
Q(uit editor and R
U(pdate workfile
E(xit with no update
R(eturn to editor Q
W(rite to named file RETURN

Cursor Moving Commands

Right-arrow (move cursor right)

Left-arrow (Move cursor left)

CTRL-L (Move cursor down)

CTRL-O (Move cursor up)

RETURN (Move cursor to beginning
of next line)

Spacebar (Move cursor to next
character)

Text Changing Commands
I(nsert text ESC
CTRL-C (Normal exit
D(elete text ESC
CTRL-C (Normal exit)

Formatting Commands

A(djust indentation
CTRL-C (Normal exit)

78 APPLE PASCAL

Table 4.1B Amplified table of other command levels of Apple Pascal. Those
’ features studied in this session are shown in bold face type.

Exit to escape
from accidental

entry.
I(nitialize the system
R(un program in workfile
F(iler
Q(uit the filer F
N(ew workfile RETURN
V(olumes on line
L(ist the directory RETURN
C(hange name RETURN
T(ransfer a file RETURN
D(ate setter RETURN
? Show additional commands RETURN
Commands Available at Any Level
CTRL-A Toggle to other half of CTRL-A
Pascal page
CTRL-S Stop and restart CTRL-S

screen output
RESET Attempts reboot of Pascal

GENERATING SOUND 79

Table 4.2 Cumulative Pascal vocabulary. New words introduced in this session
are printed in bold face. (Code: a = declared in APPLESTUFF)

Reserved Built-In Built-In Other
Words Procedures Functions Built-Ins
PROGRAM WRITE Integer Types
USES WRITELN a PADDLE INTEGER
VAR a NOTE
BEGIN Units
FOR APPLESTUFF

TO

DO
END
DIV

QUESTIONS AND PROBLEMS

1. If you are in the EDITOR, what keystrokes are necessary to clear out the workfile
and return to the editor?

2. How are the name and type of variables established in Pascal? What about the
value?

3. What is meant by “type conflict” in Pascal?

4. Discuss the similarities and differences between a function and a variable in
Pascal.

5. Write a Pascal program to display the numbers 1, 2, ..., 14, and 15 vertically on the
screen.

6. Write a program to cause the computer to play a scale with pitches equal to 12,
13, 14, ..., 23, and 24.

7. Explain how you would change a diskette name from BLANK: to TAXES..

8. Assume you have a program named SOUND.TEXT on diskette PROGRAM:.
What steps must be taken to change the name to FURY.TEXT?

80

10.

1.

12.

13.

14.

15.

APPLE PASCAL

. Suppose you have finished writing a program and it is currently in the file

SYSTEM.WRK.TEXT on the APPLEO: diskette. Explain how to move the
program to a diskette named ABC: where it will have the name SONIC.TEXT.

Assume the program SONIC.TEXT is stored on the diskette ABC:. What must
you do to move this program into SYSTEM.WRK.TEXT on the APPLEQ: diskette?
Explain how you would insert a line in the middle of a Pascal program. Assume

you begin in the EDIT mode.

Explain how you would delete a line in the middle of a Pascal program. Assume
you begin in the EDIT mode.

Discuss the similarities and differences between reserved words in Pascal (like
BEGIN, FOR, END, etc.) and built-in words (like WRITE and NOTE).

Explain precisely how a FOR loop works.

What is a simple statement? A compound statement? A null statement?

SESSION

FIVE

INVENTING NEW WORDS: PROCEDURES

In the last two sessions you have been using several different kinds of
statements. One kind was the assignment statement, such as

FITCH = 20

Another was the FOR statement, an example of which is

FOR COUNT ¢= 1 TO 10 DO
NOTE (50» 20)

We have not given a precise name to other statements that you have used, such
as

WRITE (‘HOW NOW’)#
WRITELN (/BROWN COW’)

and
NOTE (FITCHs DURATION)

You may have decided that each one of these so-far unnamed statements is a
different kind of statement (especially if you are familiar with other programming
languages). In Pascal, however, they are all examples of a single kind of statement,
called a procedure statement, or a procedure reference, or a procedure call.

Procedures and their close relatives, functions, are the main topic of this session
and the next one. As you develop a clear picture of the significance of the procedure
idea, you will see why it is that Pascal has only a very small number of distinct kinds
of statements. In fact, there are only nine different kinds of Pascal statements, and
you already have used three of them. In Sessions 7 and 8 you will use three more, so
things are moving right along.

81

82 APPLE PASCAL

SESSION GOALS

To start with, you will review use of the FOR statement to generate musical scales
that go up in pitch and, with the DOWNTO word, go down also. You will use the
EDITOR’s C(OPY B(UFFER command to duplicate program lines and to move text
lines from one place to another. Your main activity, however, will be to define
program subunits, such as the ones that play musical scales, to give these subunits
names of your choosing, such as UP and DOWN, and then to use the subunits in a
program by calling them by name. In other words, you will write procedures and call
them. You will then see how to parameterize a procedure, so that instead of always
doing the same thing, its behavior is controlled by the data passed to it. You will
explore the concepts of local and global variables, and will see that a procedure can
have its own VAR block.

5-1 STARTING UP
This sessions starts off like all the previous ones, so the instructions thistime are
a bit more concise. If you need more details, turn to the start of the previous session.
Here are the standard start-up steps:
® Boot up Pascal if your computer is off.
® Enter the FILER and set the current date.
® Enter the EDITOR and inspect the current workfile.
® Clear out the workfile, if necessary, by typing Q EFNY Q E.

® Press RETURN to complete entry into the EDITOR, and then enter INSERT
mode.

At this point, the INSERT prompt is at the top of your screen and you are ready to
type in a new Pascal program and move it into the EDITOR’s empty workspace.
Study the following program and then type it in.

INVENTING NEW WORDS: PROCEDURES 83

CTRL-C out of INSERT. Read for typing errors, repair any, and then run the
program.

As the program name implied, this program creates a fairly musical scale starting
at about C below middle-C and rising in pitch one note of the chromatic scale (the
white keys and the black keys) at a time until it reached middle-C.

Suppose you wanted a descending scale instead. Well, let’s do the obvious thing
and see what happens. Return to the EDITOR and change the FOR statement so that
it reads:

FOR FITCH = 20 TO 8 DO
NOTE (PITCH» DURATION)

Now run the changed program.

Well, that didn’t work. The program compiled correctly and ran with no reports of
errors, but no sound came out. Let’s try again.

Return to the EDITOR. Change the FOR statement again so that it looks like this:

FOR FITCH := 20 DOWNTO 8 DO
NOTE (FITCHr DURATION)

Run the result.

This version of the FOR statement works, and you have added another Pascal
reserved word, DOWNTO, to your vocabulary. In the FOR statement the word TO
means that the variable is to be increased; DOWNTO means it is to be decreased.
Notice, however, that it is not illegal to use TO when the initial-value is greater than
the final-value. The result in that case is that the FOR loop is not executed at all,
since the variable begins with a value that is already greater than the final value. /f
you want a FOR loop to count down instead of up, you have to say so by substituting
DOWNTO for TO.

Incidentally, you now know everything that there is to know about the FOR
statement. There are no new words and no new grammar rules to be learned.

5-2 DUPLICATING BLOCKS OF TEXT

You can now make a scale that goes up or down. Let's combine the two: begin
with a rising scale and follow it with a descending one. Furthermore, let's make the
descending scale happen in half the time of the rising one. The main program block
will look like this (but don’t type the changes yet):

BEGIN
DURATION = 1007%
FOR FITCH := 8 TO 20 DO
NOTE (PITCHs DURATION)S
DURATION = S03%
FOR FITCH := 20 DOWNTO 8 DO
NOTE (FITCHs» DURATION)
END.

84 APPLE PASCAL

Since the text of the first three lines is very similar to that of the second three, and
both are similar to the present text of your program, it would be nice if there were
some easy way to make a duplicate copy of what you now have and then patch up
the differences. As you have probably guessed, we wouldn't have brought up the
idea if it weren't possible. Here goes.

Return to the EDITOR. Move the cursor so that it is on top of the D in the
assignment statement

DURATION = 100

Now enter DELETE mode and press RETURN three times. Then CTRL-C out.

It probably looks to you as though things are getting worse. We said that you
were going to make a duplicate copy and we've left you without any copy. Butdon’t
lose faith; magic is around the corner.

Without moving the cursor, type C and enter COPY mode. The top line of your
screen contains the COPY prompt line:

#COFY?! BCUFFER F(ROM FILE <ESC:

It tells you that you can type one of three things: B, F, or ESC. Press the ESC key.
Evidently this is the escape route out of COPY if you accidentally fall into it from the
EDITOR.)

Type C again to enter COPY. Now type B.

Wonder of wonders! The three lines of text you previously deleted are now back
in your program, and you're back at EDIT level with the cursor on D where it started
out. Now comes the best part. Type C and B again.

And so, as advertised, you have made an exact copy of the original three lines.
Your main program block should now look like this:

BEGIN
DURATION ¢

1005

t= 20 8 DO
NOTE (FITCHs, DURATIDN)
END.

You're still not where you want to be, but let’s stop fora moment and take note of
the way copy worked. The text that you deleted from the EDITOR’s workspace was
not totally destroyed. Instead it went into the insert/delete buffer. This is the same
buffer where your text is stored when you enter INSERT and then type the text on
your keyboard. Thatis why itis called the insert/delete buffer. (We'll simply call it the
buffer from now on.)

INVENTING NEW WORDS: PROCEDURES 85

Whenever you enter COPY and type B, a
copy of the current contents of the buffer is
inserted into the text at the current position of
the cursor.

From the above description, you can see that whenever you delete some text
from your workspace, you can get it back by typing C B. It will be inserted where it
was before (provided that you have not moved the cursor after the deletion). Thus,
for an accidental deletion, “C B” is the “Oops!” button.

The other thing to note is that after you type C B the buffer still contains whatever
text it had before. So if you type C B again, you get another copy at the current
cursor location. That is exactly what happened in the present case. If you had
wanted 10 copies you would have had only to type C B 10 times.

Now let’s get back to the editing job on the SCALES program. Three changes
have to be made:

Change the first occurrence of “20 DOWNTO 8” to “8 TO 20”.

Change the second occurrence of “:= 100” to “:= 50”.

Insert a semicolon after the first FOR statement.

Read that last instruction very carefully. Don’t put the semicolon right after the
DO, since thatis not the end of the FOR statement. Every FOR statement begins with
the word FOR and ends with the simple or compound statement that is to be
repeated. The FOR statement is on two text lines in the present example, so the
semicolon has to go at the end of the second line of the pair.

If by mistake you had put the semicolon after the DO the result would have been
grammatically correct but it would not have been what you wanted: the FOR
statement would have counted from 8 to 20, each time executing our old friend, the
null statement. Then the NOTE procedure, the statement after the FOR statement,
would have been executed exactly once with a PITCH value of 21.

A misplaced semicolon is the easiest Pascal
user trap to fall into. To stay out of it, you need a
very clear mental picture of the structure of
each kind of Pascal statement.

If you made the three editorial changes, then your program should now look
exactly like this:

86 APPLE PASCAL

PROGRAM SCALESS

USES
AFFLESTUFF $

VAR
FITCHy DURATION ¢ INTEGER?

BEGIN
DURATION, =

FOR FITCH = 20 DOWNTO 8 DO
NOTE (FITCHy DURATION)
END.

There is no semicolon after the final FOR statement because it is bracketed by the
END. (Remember, BEGIN and END are not statements.) Semicolons are required
between statements, not after statements.

Read the program over carefully. Then run it.

5-3 DEFINING NEW WORDS

You now have a program that does one up-scale and one somewhat shorter
down-scale. In fact, if the computer knew what you were talking about by UP and
DOWN, then you could write the main program block as

BEGIN
UF#
IOWN

END.

You could also make longer and more complicated programs very easily, such as

BEGIN
UFi DOWN$ UF# UF§ UF$ DOWN
END.

The problem is that Pascal has never heard of UP and DOWN. These are not
words in its standard vocabulary. However, Pascal does have a way for you to define
new words of your own choosing and to give them whatever meaning you want, in
terms of existing words. Let's do it and then see what we've done.

You are going to be using the EDITOR to make three major changes in the text.
Step 1 will be to create a new main program block that uses UP and DOWN, as if they
had meaning to Pascal. Step 2 will be to create the definition of UP. Step 3, similar to
step 2, will be to create the definition of DOWN. Let’'s do the main block.

INVENTING NEW WORDS: PROCEDURES 87

Enter the EDITOR and put the cursor on the B in BEGIN. Enter DELETE mode.
Press RETURN to delete the whole line. CTRL-C out of DELETE. At EDIT level
again, move the cursor to the E in END. Type C B.

You have deleted BEGIN from its previous location and inserted it six lines down.
In effect you moved it by this sequence: delete, position cursor, copy buffer. No
other command for moving text exists. You only moved one word, but you could
have moved a dozen lines in the same way. Now let’s finish up Step 1.

Put the cursor on the E in END, enter INSERT mode. Indent two spaces. Type the
following line:

UF$ UP$ DOWNF DOWN# UF

Press RETURN at the end of the line and then CTRL-C out of INSERT.
At this stage your partially edited program text should look like this:

PROGRAM SCALESH

USES
AFFLESTUFF #

VAR
FITCHy DURATION ! INTEGER3/

DURATION $= 1003

FOR FITCH ¢= 8 TO 20 DO
NOTE (FITCHy DURATION)G#

DURATION &= S507#

FOR FITCH = 20 DOWNTO 8 DO
NOTE (FITCHy DURATION)

BEGIN
UF§ UF$ DOWNS DOWNS UF

END.

Now, for step 2, we need to define what UP means. Here's the way to do that:
At EDIT level, put the cursor on the D in the first assignment statement in the text.
Enter INSERT and type these two lines:

PROCEDURE UF#
BEGIN

Be sure to indent BEGIN, and to press RETURN after it. CTRL-C out of INSERT
mode. Enter ADJUST mode next. Press the right-arrow key four times to move the
start of the assignment statement under the G in BEGIN. Press CTRL-L twice to
indent all three lines similarly. Now CTRL-C out of A(DJUST. At EDIT level, press
RETURN to put the cursor at the start of the next line, the second assignment
statement. Enter INSERT again. Indent two spaces and type this line:

END?

88 APPLE PASCAL

Finally press RETURN twice, and CTRL-C back to the EDIT level.
Well, that was a long trip through the EDITOR, but it was mainly a review of things

you had done in earlier sessions. Step 2 is now complete and your job in progress
should look like this:

PROGRAM SCALESSH

USES
AFFLESTUFF #

VAR
FITCHy DURATION ¢ INTEGER?

PROCEDURE UF}#
BEGIN
DURATION = 100%
FOR FITCH := 8 TO 20 DO
NOTE (FITCHs DURATION?
END?

DURATION 3= 503
FOR FITCH != 20 DOWNTO 8 DO
NOTE (FITCHs DURATION)
BEGIN
UFs UFs DOWNF DOWNS UF
END.

Step 3 is exactly like step 2, except for a change in the name after PROCEDURE.
Follow the above editing steps on the second three-line block, changing UP to
DOWN so that the complete program now looks like this:

PROGRAM SCALES}H

USES
AFPFLESTUFF #

VAR
FITCHy DURATION ! INTEGERS#

PROCEDURE UF$
BEGIN
DURATION $¢= 1004
FOR FITCH = 8 TO 20 DO
NOTE (FITCHy DURATION)
END}

PROCEDURE I'OWN$
BEGIN
DURATION &= i
FOR FITCH $:= 20 DOWNTO 8 DO
NOTE (PITCH» DURATION)
END}

50
2

BEGIN
UFé UF$ DOWN$ DOWNS UP
END.

INVENTING NEW WORDS: PROCEDURES 89

Before you run the new version, note its general structure. You won't be able to
see the whole program on your screen at once, but as you move the cursor up and
down you can see the hidden parts.

Here is a way to move the cursor quickly over large distances. From EDIT level
type J, for J(UMP. The prompt line at the Jump level says

FJUMF L BCEGINNING E(ND M(ARKER <ESCH

As with other EDIT commands, ESC is the escape route for accidental entry. Type B.
Type J E. These commands move the cursor quickly to the first and last characters in
the workspace. (We won’tdiscuss the M command here. Later, you can learn about it
in the Apple Pascal Operating System Reference Manual.)

The new version of your program has a heading, a USES block, a VAR block, two
different PROCEDURE blocks, and finally, the main BEGIN/END block. Note also
that each procedure block looks like a miniature program: it has a heading and a
BEGIN/END block. A semicolon separates the heading from the BEGIN/END, and a
semicolon after END terminates the PROCEDURE. The main program block is the
shortest part of the program. (This situation is characteristic of well-written
programs, by the way.)

Now, run the program, fix any compile-time errors, and listen to the results. Go
back to the EDITOR, change the sequence of UP and DOWN statements in your
main block, and then run the new program. Go to the EDITOR again and delete all
the UP and DOWN words in the main block. Run this version.

Notice, first of all, that the sequence of scales you heard each time was the same
as the sequence of UP and DOWN statements in your main block. When you
removed all of them you heard nothing. This observation should convince you that it
is the main program block that is in full command at all times. The FOR statements
and NOTE statements in the PROCEDURE blocks only came alive when the main
program block calls upon them to do so.

In the first new version of your program the word UP appeared in the main block
several times. In each appearance, UP was a statement by itself. (Remember that
semicolons separate statements.) The same was true of DOWN. When the program
was run, each statement in the main block was executed, one after the other. When
UP was executed, it called upon its definition in the PROCEDURE UP block. At that
moment the statements in that block began execution. When they finished, the
execution of that UP statement was complete, and the next statement in the main
BEGIN/END block began execution. If it was another UP, the same thing happened.
If it was DOWN, then a call went out to PROCEDURE DOWN and the defining
statements there were carried out.

As you have seen, the power of being able to define your own procedures has two
different dimensions. First, it often makes your main program much shorter and
therefore easier to change and experiment with. At least as important, it allows you
to organize a program into meaningful units and to name each unitaccording to the
purpose it serves in the overall design.

90 APPLE PASCAL

Programs that use procedures well are
generally far easier to read, easier to under-
stand, easier to change, and easier to get
working. Often they also make more efficient
use of computer resources; but that isa farless
important benefit as computers get cheaper
every year and human resources get more
costly.

5-4 CHANGEABLE PROCEDURES

In your experiments so far, each one of your procedures did the same thing each
time it was called. It would be a lot more interesting if you had some way to control
certain aspects of the procedure at the time when it was called.

Your UP procedure always began an ascending scale at C below middle C. It
would be a somewhat more interesting musical object if, for example, we could have
it start at middle C when called the first time, and at F above middle C the next time.
You could, of course, accomplish this by separate procedures for each starting note;
but that would be tedious. Especially when there is another way.

Edit your PROCEDURE UP block so that it looks like this:

PROCEDURE UF (KEY ! INTEGER)?#
BEGIN
DURATION $¢= 100}
FOR FITCH = KEY TO KEY + 12 DO
NOTE (FITCHr DURATION)
END#

The new word KEY appears in the first and fourth line; the remainder of the
procedure is unchanged.

Make similar changes in the PROCEDURE DOWN block. In this case, “20
DOWNTO 8” should be replaced by “KEY DOWNTO KEY - 12“. If part of the right
side of the FOR statement disappears, you can use CTRL-A to see it.

Next, edit the main block so that it looks like this:

BEGIN
UF (8>3 DOWN (20)§ UF (8)#
UF (20)% UF (32)% DOWN (20)
END.

INVENTING NEW WORDS: PROCEDURES 91

With these three additions to program SCALES, it should look like this:

PROGRAM SCALESH

USES
AFFLESTUFF §

VAR
FITCHs DURATION ¢ INTEGERj$

PROCEDURE UP (KEY ! INTEGER)#$
BEGIN
DURATION &= 1004
FOR FITCH $= KEY TO KEY + 12 DO
NOTE (FITCHy DURATION)
END$

PROCEDURE ['OWN (KEY ¢ INTEGER)}#
BEGIN
DURATION (= 503
FOR FITCH := KEY DOWNTO KEY -~ 12 DO
NOTE (FITCHy DURATION)
END}

BEGIN
UF (B)5 DOWN (200§ UF (8)3
UF (2005 UF (32)5 DOWN (20)
END.

Check the text carefuly. Run the program and listen. Rerun a few times and listen
for each procedure call to happen.

The first UP and DOWN did nothing new, nor did the next UP. But the following
UP went an octave higher, and the one after that went another octave higher. How
did it work? What is KEY? Where in the program was it defined (declared)? Get back
to the EDITOR and look closely at the PROCEDURE UP block and at the main
program block.

The thing that stands out in both places is the addition of something in
parentheses after the procedure name. In the PROCEDURE block, the item in
parentheses is a declaration telling Pascal that KEY is a variable of type integer. In
the main program block, we see particular integers, such as 8, 20, and 32, between
parentheses.

The next thing to note is that the same variable name, KEY, appears in
parentheses after procedure UP and also in the FOR statement within that same
procedure. Obviously, there must be some connection, and there is. KEY is called a
parameter variable. Like any variable, it has a name (KEY), a type (integer), and a
value. However, this parameter variable did not get its value by means of an
assignment statement, the way ordinary variables do. Instead, it had its value passed
to it at the time the procedure was called. In your program you had the statement

UF (8)

92 APPLE PASCAL

When that statement was executed, it called procedure UP and it passed avalue of 8
to parameter variable KEY. While procedure UP was running, it used KEY’s value in
the FOR statement, with the result that the initial PITCH value was 8 and the final
value was 8 + 12, or 20. Later, your program executed the statement

UF (32)

which called UP again but this time passed a value of 32 to parameter variable KEY.
That caused the initial and final PITCH values to be 32 and 44, respectively.

The concept of calling a procedure and
passing values to it is a very powerful one—
perhaps the most powerful one in program-
ming.

You should stop here for a moment, review what you have done, and reflect a bit
on how it all works and what it means. You will be using procedures and parameters
a great deal in the remainder of this book, so you'll be gathering experience as you
go. Perhaps the main thing to notice now is that procedures give you a way of
breaking a complicated programming job down into manageable chunks, each of
which performs some fairly simple task. When you adopt this strategy (which, by the
way, is a good problem-solving approach in many real-life situations; more about
that later) you will find that your main program is largely a sequence of procedure
calls.

5-5 PARAMETERS, LOCAL AND GLOBAL VARIABLES

You may have wondered about the fact that the parameter KEY was declared
twice: once in the PROCEDURE UP heading and once in the PROCEDURE DOWN
heading. Isn't it true that variables in Pascal are supposed to be declared only once?
The answer to that is “yes and no”. It is certainly true, for example, that a particular
variable name can appear only once in a particular VAR block. We will see, however,
that a procedure can have variables of its own that the main program does not know
about by name. Parameter variables are in that class, as the following experiment
will show.

Go to the EDITOR and change the main BEGIN/END block to look like this:

BEGIN
UF (18)%
WRITELN (KEY)
END.

INVENTING NEW WORDS: PROCEDURES 93

What do you think will happen when you run this version? Will 18 by written onyour
screen? Or 31?7 Or what? Run the program.

You got compile-time error number 104. Go to the EDITOR and read the
message. Then press the spacebar. The compiler gives you the familiar “undeclared
identifier” complaint about variable KEY in the WRITELN statement. This tells you
that the main program doesn’t even know about the word KEY in UP and in DOWN.
In the same way, the KEY in UP is distinct from KEY in DOWN and each one is
unknown to the other.

The situation with the DURATION variable may or may not be different. Let's
think about that. First, note that DURATION is declared in the VAR block of the main
program. Then, note that its name appears inside UP and again inside DOWN. Since
your program compiled and ran, it is safe to conclude that procedures UP and
DOWN do know about the existence of DURATION. You'd probably expect the main
program also to know about it, but let's make certain.

Change the main block again so that it looks like this:

BEGIN
UF (2003
WRITELN (DURATION)$
DOWN (32) 3
WRITELN (DURATION)
END.

Run the program, listen, and watch the screen. You should see this:

RUNNING ...
100
50

Do you understand why? Procedure UP assigned a value of 100 to DURATION.
The first WRITELN wrote on the screen the value of DURATION after the call to UP.
Then came the call to DOWN, which assigned 50 to DURATION. The second
WRITELN wrote the new value on the screen. There is only one variable named
DURATION and it is known to the main program and to both procedures. The same
is also true of PITCH, of course. We say that PITCH and DURATION are global
variables, because they are known to all parts of the program. Let’'s do another
experiment to sharpen the concept of a global variable.

Go to the EDITOR and use DELETE to eliminate the lines

VAR
FITCHy DURATION ¢ INTEGER$

from the main program. Then use COPY BUFFER to place an exact copy of them at
the beginning of UP and also at the beginning of DOWN.

94 APPLE PASCAL

In case you don't recall the steps for making these changes, here they are:

1. Put the cursor on the V in VAR.

N

. Enter DELETE mode.

3. Press RETURN twice.

4. CTRL-C out.

5. Put the cursor on the B in BEGIN in procedure UP.

6. Type C B

~

. Use ADJUST to indent both lines.

At this point the two lines should appear just before BEGIN. Finally, repeat steps
5, 6, and 7 for procedure DOWN. The program should look like this now:

PROGRAM SCALESSH

USES
AFFLESTUFF§

PROCEDURE

OCE] INTEGER) #

EGER S

DURATION (= 100%
FOR FITCH (= KEY TO REY + 12 DO
NOTE (FITCHy DURATION)

END;

PROCEDURE INOWN (KEY ¢ INTEGER)}#
VAR e
,, TC GERY
BEGIN

DURATION = 503
FOR FITCH i= KEY DOWNTO KEY - 12 DO
NOTE (FITCHs DURATION)
ENDJ

BEGIN
UF (2004
WRITELN (DURATION)
DOWN (32) 4
WRITELN (DURATION)
END.

Check it out carefully. Run it and see what happens.

Well, there you are again with the “undeclared identifier” message on the screen.
The main program didn’t know about the DURATION variable.

Make one last change. Delete both WRITELN statements and try to run again.

INVENTING NEW WORDS: PROCEDURES 95

There shouldn’t be any error messages this time, and the program should run just
as it did when the VAR block was in the main program only.

What do you conclude about the new situation, with a VAR block declaring
PITCH and DURATION inside UP and inside DOWN? First off, DURATION can't be
a global variable any longer, since the main program doesn’t know about it. On the
other hand, UP certainly knows about a variable named DURATION, since it assigns
avalue to it and uses it in the NOTE statement. DOWN also knows about a variable
with the same name. Finally, there was no problem in declaring DURATION to be a
variable in two places. (All of these facts are also true of PITCH.)

In the last version of your program, you converted PITCH and DURATION into
what are called local variables. Local variables are known within the procedure
block where they were declared but not outside. You created local variables by
putting the VAR block that contained the variables inside the procedure block.
Although UP and DOWN each declare a variable named DURATION, UP's
DURATION is a different variable from DOWN’s DURATION.

Any names defined within a procedure
block are known locally everywhere within that
block, but they are not known outside that
block.

Parameter variables lie somewhere between local variables and global variables.
If a variable is local to a procedure, neither its name nor its value is known outside
the procedure. If it is global, both name and value are known outside. If it is a
parameter, then its name is not known outside, but its value is passed to it from
outside at the moment the procedure is called.

You will find that the ability to declare local variables is very useful in writing a
library of procedures, since the writer doesn’t have to worry that a variable in the
main program might accidentally have the same name as one in a procedure. If the
one in the procedure is local, then it will have no effect on the one in the main
program. They can coexist peacefully.

96 APPLE PASCAL

Here’s a user trap to watch out for. In the
main program you declare X to be a variable.
The program contains a procedure. You use X
as avariable in the procedure, but by accident,
you forget to declare it within the procedure,
even though you were thinking of X there as a
local variable. When you compile the program
you get no error messages, since the compiler
thinks you mean X to be global and intended
the procedure’s X to be the same as the main
program’s X.

This gives surprising results that are extremely hard to diagnose. The way out of
the trap is to avoid using the same names for local and global variables even though
it is legal to do so. If you had used Y instead of X for one of the variables in this
example, the compiler would have reported an “undeclared identifier” because of
the missing VAR block.

5-6 PROCEDURES AND PROBLEM-SOLVING

This section is mainly philosophical. If you are eager to get on with doing things,
skip ahead.

We said earlier that breaking a complicated task into simpler subtasks, and then
working with each subtask more or less independently, was a good general
approach to problem solving, not just in computer programming, butalso in the real
world. You actually do that all the time.

Consider the task of going to work or to school in the morning. If you were asked
to describe the task, you would probably say that you get out of bed, do bathroom
chores, getdressed, have breakfast, and drive or take a bus to work or school. That is
what is called a top-level description of the main task. infact, itis nothing more than
a list of procedure calls. What does “get out of bed” mean? Well, it means this: turn
off alarm; rub eyes; throw back covers; put on slippers; stand up; make bed. But this
listis nothing more than another description in terms of still lower level subsubtasks.
For example, “put on slippers” means this: find slipper; if left slipper, puton left foot;
if not, put on right foot; find other slipper; put on other foot.

You may think that the description of procedure put-on-slippers is already fairly
detailed. In fact, it too is merely a description in terms of calls to still lower level
procedures. At some point you will get exasperated if asked to specify all this detail
and you will say, “Oh, you know what | mean by that!” In other words, you are
claiming that some procedures are predefined or built-in and don’t require
definition. For example, you might say that find-a-slipper or put-left-slipper-on-left-
foot is a built in procedure.

Itis, and itisn’t. It is if you are talking to another person who understands your
meaning. Butif you are talking to achild who is still having trouble with left and right,

INVENTING NEW WORDS: PROCEDURES 97

or a very young child who is still working on simple hand-eye coordination, these
low-level procedures, to you, are still high-level descriptions to the child who is
trying to master them and is working on the still lower-level tasks which compose
them.

There is a related point to be made here. It often happens that a person has a
good top-level description of a task, but makes mistakes lower down in defining or
carrying out a subtask. The child who knows how to do the get-out-of-bed
procedure but walks out of the bedroom with an unmade bed or with the leftslipper
on the right foot, clearly knows how to get up in the morning but still has a few bugs
in the lower level procedures. Recent research is showing that many school children
who seem to make “dumb mistakes” in addition and subtraction are, in fact, calling
on buggy procedures at the lower level, while their top-level understanding is
perfect.

The philosphical point to be made here is this: the concepts of main program,
procedure, subprocedures, and debugging, which arise out of computer program-
ming needs, are powerful ideas for thinking about knowledge itself and about how
people acquire knowledge. In a sense that is probably more than just poetic,
learning seems to be a matter of programming, debugging, and reprogramming the
mind.

Whether you buy that conclusion or not, you will have to agree, we think, that the
real world is chock full of procedure calls, and we conclude this section with an
example. Flip open the pages of your favorite French haute cuisine cookbook and
look up arecipe or two. Very soon you will come upon some simple-looking dish that
has only a few ingredients. Looking more carefully, you see that it needs “a cup of
your favorite white sauce.” What white sauce? They don't sell that at the
supermarket. So you go to the index of your cookbook and, behold!, there are 10
pages devoted to the preparation of various white sauces. You have just discovered
a procedure call.

5-7 GRAMMAR RULES FOR PROCEDURES
The grammatical structure of a procedure is almost the same as that of the
program itself. Both begin with a heading, followed by a declaration block, followed

by a BEGIN/END block. The precise grammatical form of the program and
procedure structures are:

prog-head prog-declaration-block BEGIN statement(s) END.

proc-head proc-declaration-block BEGIN statement(s) END;

Thus, the text of a procedure, like that of a program, begins with a heading and ends
with the reserved word END and a punctuation mark.
The program heading has the form

prog-head = PROGRAM name parameter-list;

98 APPLE PASCAL

while the procedure heading format is

proc-head = PROCEDURE name parameter-list;

So far, the program parameter-list has been a null list—i.e. a list whose text
contains no characters, like the null statement. You have also seen null parameter-
lists in the first version of procedure UP and DOWN, and also lists that were not null.

With only a few exceptions, the declaration block of a procedure has the same
general form as that of a program: both declaration blocks can contain a VAR block,
any number of PROCEDURE blocks, and other types of blocks you will learn about
later. Note especially that this grammar rule allows you to define a local procedure
within another procedure, and still another “local-local” procedure within that one,
and so on, as deeply as you want. (It is unusual to find actual programs with more
than two or three procedure levels, by the way.)

The BEGIN/END block of statements in a procedure is subject to exactly the
same grammar rules that apply to statements in a program. Whatever is legal in one
is legal in the other. Note, however, that a period comes after the main BEGIN/END
while a semicolon comes after a procedure BEGIN/END.

In the activities you carried out in this session, you learned that there were rules
about which variable names were known to which parts of a program. These rules
are called scoping rules, and they also apply to the names of procedures and to the
names of other things that you will learn to define in later sessions: functions,
constants, and data types.

In Pascal there is a single rule that tells the
scope of any name: the name is known only
within and everywhere within the text of the
program unit where the name was defined.

The simplest application of this rule is to names of global scope. For aname to be
known everywhere within a program it must either be a built-in name, such as
WRITELN, or else it must be defined in the declaration section of the main program.
Avariable declared in the main program VAR block is a global variable. A procedure
defined in the main program’s declaration is a global procedure—that is, it may be
called by the main program, or by another procedure defined in the main program'’s
declaration section, or even by a procedure defined within the declaration section of
another procedure. Global names are known everywhere.

Another application of Pascal’s scoping rule tells what is meant by local scope. If
a name is defined within the declaration section of a procedure (or a function), the
name is unknown to the program unit in which that procedure (or function) was
defined. But such a name is known everywhere within the procedure (or function)
where it was defined.

INVENTING NEW WORDS: PROCEDURES 99

There is an easy way to think about Pascal’s scoping rule. A given program unit
(i.e. a procedure orafunction or the main program itself) is like an individual person.
A person can have grandparents, parents, siblings, children, nieces and nephews,
grandchildren, etc. A procedure defined in the main program has a parent which is
the main program. If the main program declaration block defines other procedures
or functions, these are siblings. If the procedure in question contains a declaration
block that defines another procedure or function, that is a child. If a sibling has
children, they are nieces and nephews. |f a child has children, they are
grandchildren. '

With this analogy in mind, Pascal’s scoping rule says that names defined in a
particular program unit are known to it, it's children, it's grandchildren, it's great-
grandchildren, etc. But the names are not known to parents, grandparents, great-
grandparents, etc. Nor are the names known to siblings, nieces and nephews, etc.

If you are a procedure, you and all your
direct lineal descendents are the only ones who
know the names you define.

SUMMARY

In this session you learned how to declare procedures within a program and how
to call them from statements in the program. While learning these main facts about
procedures you also learned a number of new things:

8 You had to use the word DOWNTO in a FOR statement if the variable was to
decrease by one each time through the loop.

® The familiar WRITELN and NOTE statements used in earlier sessions were
identified to be examples of a single type of Pascal statement: the procedure call.
® You used the EDITOR’s C(OPY B(UFFER commands to make duplicate copies

of program text, and also to move text from one place to another.

® You edited two sections of your main program and converted them into
procedures.

® You changed the main program into a list of procedure calls.

® YouusedJ B and J E in the editor to move the cursor to the beginning and end of
the workspace.

® You added a parameter list to your procedure declarations, and modified the
procedure calls to pass data values to the parameter.

100 APPLE PASCAL

® You discovered the difference between global variables and local variables, and
saw the relation between them and parameter variables.

® You saw that conflicts do not arise when a calling program declares a variable
with the same name as a local variable declared in the called procedure. The
local variable is used within the called procedure, as if the other one did not exist,
and vice versa.

Finally, let’'s update the Pascal level structure table, and the Pascal vocabulary
table.

INVENTING NEW WORDS: PROCEDURES 101

Table 5.1A Amplified table of the EDITOR levels of Apple Pascal. Those features
studied in this session are shown in bold face type

E(ditor
Q(uit editor and
U(pdate workfile
E(xit with no update
R(eturn to editor
W(rite to named file

Cursor Moving Commands

Right-arrow (Move cursor right)
Left-arrow (Move cursor left)
CTRL-L (Move cursor down)
CTRL-O (Move cursor up)
RETURN (Move cursor to beginning
of next line)

Spacebar (Move cursor to next character)
J(ump to

E(nd of text

B(eginning of text

Text Changing Commands

I(nsert text

CTRL-C (Normal exit)
D(elete text

CTRL-C (Normal exit)
C(opy text from

B(uffer

Formatting Commands

A(djust indention
CTRL-C (Normal exit)

Exit to escape

from accidental
entry.

ESC RETURN orQE
R

Q
RETURN

ESC

ESC
ESC

ESC

102 APPLE PASCAL

Table 5.1B Table of other command levels of Apple Pascal. No new features
appeared in this session.

Exit to escape
from accidental

entry.
R(un program in workspace
I(nitialize the system
F(iler
Q(uit the filer F
N(ew workfile RETURN
V(olumes on line
L(ist the directory RETURN
C(hange name RETURN
T(ransfer a file RETURN
D(ate setter RETURN
? Show additional commands RETURN
Commands Available at Any Level
CTRL-A Toggle to other half of CTRL-A
Pascal page
CTRL-S Stop and restart screen output CTRL-S

RESET Attempts reboot of Pascal

Table 5.2 Cumulative Pascal vocabulary. New words introduced in this session
are printed in bold face. (Code: a = declared in APPLESTUFF)

Reserved Built-In Built-In Other
Words Procedures Functions Built-Ins
PROGRAM WRITE Integer Types
USES WRITELN a PADDLE INTEGER
VAR a NOTE
PROCEDURE Units
BEGIN APPLESTUFF
FOR
TO
DOWNTO
DO
END

DIv

INVENTING NEW WORDS: PROCEDURES 103

QUESTIONS AND PROBLEMS
1. What three kinds of Pascal statements have you used so far in this book?

2. Suppose a program contains these two statements:

FOR I := 5 DOWNTO N DO
WRITELN (I)#
WRITELN (D)

What will appear on the screen if the value of N is 1? 4? 57 67

3. Answer question 2 for the situation in which there is a semicolon immediately
after DO. (How many statements would there be in that case?)

4. From the EDITOR, explain what each of the following key press sequences will
do. Assume the cursor is at the beginning of line 1 and that there are 10 lines in
the workspace.

a. D RETURN RETURN ESC

b. D RETURN RETURN CTRL-C

c. D RETURN RETURN CTRL-C C B

d. D RETURN RETURN CTRL-C RETURN RETURN C B C B
e.JE

f.JB

g.J ESC

5. Explain how adding a PROCEDURE block to a program can shorten it.

6. Explain how adding a PROCEDURE block can make a program easier to
understand.

104 APPLE PASCAL

The next three questions refer to the following program text. For ease of identifying
lines, we have put number labels on each text line.

7.

10.

11.

1¢ PROGRAM TOF3#

23 VAR

3 HENRY ¢ INTEGER?#
4 PROCEDURE MIDDLE?#
S VAR

6 GWEN ¢ INTEGERS#$
7 PROCEDURE EBOTTOM#
83 VAR

9 LUKE ¢ INTEGER?#
10¢ BEGIN

112 <statement 1>
123 END}#

13:¢ BEGIN

14¢ “statement 2

1353 END}#

16: BEGIN

17 “gtatement 3

18! END.

Which line or group of lines of program TOP contain
a. The heading?

b. The declaration block?

c. The BEGIN/END block?

(Hint: These three parts must add up to the whole program.)

. Answer question 7 for procedure MIDDLE. Do the same for procedure

BOTTOM.

. You are procedure MIDDLE. In terms of family relationships, what sort of

relatives are TOP and BOTTOM?

In the family (TOP, MIDDLE, BOTTOM, HENRY, GWEN, LUKE), who knows
HENRY? Who knows GWEN? Who knows LUKE?

Consider these three possible statements:

HENRY $¢= G}
GWEN (= 10%
LUKE 3=

For each one, decide whether it would lead to the “undeclared identifier” error
message if used as statement 1? As statement 2? As statement 3? Which variable
is known globally, throughout the program?

INVENTING NEW WORDS: PROCEDURES 105

12. Consider these two possible procedure call statements:

13.

14.

15.

16.

17.

MIDDLE
ROTTOM

Decide for each one whether it would lead to the “undeclared identifier” error
message if used as statement 3?

How does a parameter variable of the kind you used in this session receive its
name? Its type? Its value?

The diatonic scale in the key of C major, starting at middle C, consists of these
eight pitches: 20, 22, 24, 25, 27, 29, 31, and 32. Write a procedure that plays such
an ascending scale, and where the duration of each note is determined by
paddle one. (Hint: You will need eight NOTE call statements.)

“Transposing”, in music means adding the same pitch value to every note in the
diatonic scale. Rewrite the procedure in Problem 14 so that there is aparameter
called KEY which is added to the pitch value in each NOTE call statement. If KEY
has the value zero, the C major scale should result.

Section 5-6 showed how you can describe the everyday task of going to work as
a sequence of procedure calls to subtasks, which in turn were calls to
subsubtasks, etc. Pick another common task and describe it in the same way.
Write the name of each task on one line, and indentunder it each of its subtasks,
etc.

Based on your task analysis in Problem 16, give an example showing how abug
in executing a low-level task can give unexpected results, even though the top-
level description of the task is accurate.

Downloaded from www.Apple2Online.com

SESSION

SIX

MORE INVENTED WORDS: FUNCTIONS

In Session 5 you saw how to enlarge on the built-in vocabulary of the Pascal
language by inventing new words of your own and defining precisely what you mean
by them. You invented the words UP and DOWN and, you used PROCEDURE
blocks to define their meanings in terms of known words and statements, such as
NOTE and FOR. Once defined, you were able to use these words as commands, just
as though they were part of the language. The result was that your main program
became both shorter and was more meaningful to a reader.

In this session you will explore a very close relative of the procedure, called a
programmer-defined function. You are familiar with the idea of a function, since you
have already used the built-in PADDLE function and have seen that it carries out a
process that returns an integer value. In this session you will learn how to define
your own functions.

SESSION GOALS

You will experiment with the built-in RANDOM function and RANDOMIZE
procedure and discover their properties. You will use the MOD operator and learn its
relationship to the DIV operator you used earlier with integers. You will use MOD
and RANDOM together to produce a smaller set of random integers, useful in
programming chance events, such as games. You will define a new function of your
own that returnsarandom integeriying between two given integers. You will test the
function by using it to make sounds with random pitches in a given octave. You will
meet the famous Off-By-One Bug. You will refine your programs to use paddle
input. You will see how to place comments in the text of a program, and will review
how to write the finished version on your PROGRAM: diskette. Finally you will
explore new features of the EDITOR.

6-1 RANDOM NUMBERS

Although your main goal here is to learn how to define functions of your own
devising, this session begins with a side trip that will introduce you to a new function
that has already been defined for you in the APPLESTUFF unit. You have already
used one such built-in (also called intrinsic) function: namely PADDLE. The new
one is called RANDOM. Let’s see how it works.

107

108 APPLE PASCAL

Boot up Pascal and enter the date if necessary. Enter the EDITOR to check the
workfile. Clear it out if necessary and return to the EDITOR. Enter INSERT mode
and type the following program.

Check it over for errors. Then run it. If there are compile-time errors, fix them.

The program produces two columns of integers. The first column is just the
steadily increasing value of the FOR-loop variable, COUNT. But what about the
second column? The numbers there are mostly five-digit numbers, but not always.
None of them is negative and there seems to be a ceiling at about 32,000.

Note down the first three or four numbers in the second column and run the
program again.

Again, you got similar results. In fact, the numbers you noted down were
repeated exactly the second time. Whatever process produced them before, it did
the same thing again. But the sequence of numbers produced seems to be very:
chaotic.

Itis clear how the numbers got on the screen. Your WRITELN procedure call had
as the third item in its parameter list a variable named CHAOS. CHAOS gotits value
in the assignment statement

CHADOS = RANDOM

RANDOM must be the source of all those strange numbers. As we said earlier,
RANDOM is a built-in function that comes along with the rest of APPLESTUFF. A
function, you recall, is a precisely defined process that produces avalue. Whenever
a statement containing the name of the function is executed, the process happens
and the function returns the value that the process produced. (If you're hazy about
the notion of a function and how it differs from a variable, you might review Section
4-5))

So RANDOM is a function that returns positive integers. Successive calls of the
RANDOM function produce new integers, but there appears to be no predictable
pattern, except that they don’t seem ever to be much over about 32,000. Although
there is no obvious order, something fairly definite must be going on, sinceasecond -
run of the program produced the exact same sequence of values as the first.

MORE INVENTED WORDS: FUNCTIONS 109

You might guess that somewhere in the memory of the computer there is a long
table of these numbers; but that isn’t the case. In fact, each one is computed by a
precise formula from the number before. The initial number, called the seed,
determines the whole sequence. Although the numbers aren'’t really produced by
chance, the formula used to generate them is chosen carefully to make the numbers
seem as random as the roll of a die, or the toss of a coin.

Go to the EDITOR and insert, just before the FOR statement, this line, including a
RETURN:

RANDOMIZE §

Run the program. Then run it again.

The sequence of numbers changed each time, didn't it? It looks as though the
computer now may actually have produced “real” random numbers. Not so!
RANDOMIZE is a call to a built-in procedure in APPLESTUFF. When called, it uses
some chance physical event to produce one number, which is used as the seed for
the formula discussed above. But each number after that is computed from the one
before.

The point of this discussion is to let you know that the computer doesn’t actually
have a true dice-rolling capability. Nevertheless, the RANDOMIZE procedure and
the RANDOM function are close approximations and are very useful in introducing
chance-like events into a computer program when you want that—in a game, for
example.

6-2 THINK OF A NUMBER FROM 1 TO 10

You now know how to produce random numbers between 0 and some big
number (32,767 to be precise). That's fine, we hear you saying, but how about
random numbers over some other interval? To simulate the roll of a die, one wants
numbers between 1 and 6 to occur with equal chance, for example. How can that be
done?

Go to the EDITOR and change your assignment line to look like this:

CHAOS != RANDOM MOD &3

Run the program. Run again.
You're almost there. Variable CHAOS is receiving random values between zero
and five. All that you would have to do now is to change the assignment line to read

CHAOS = 1 + RANDIOM MOD 6%

and you would have it.
But, how did the phrase “MOD 6" do the job? What does MOD mean? Why 6?
To answer that, go to the EDITOR and change the assignment line again:

110 APPLE PASCAL

CHADS := COUNT MOD 64

Run the program.

The program now writes on each line of the screen the value of COUNT, followed
by the value of COUNT MOD 6. The values are identical when COUNT is between
zero and 5. But at COUNT =6, COUNT MOD 6 goes back to zero. Inthe same way, 7
MOD 6is 1,8 MOD 6 is 2, etc., until we reach 12, At that pointyou see that 122MOD 6
is zero again.

If you haven't seen the rule yet, here is itt COUNT MOD 6 is the remainder of
COUNT divided by 6. For example, 13 divided by 6 is 2 with aremainder of 1; and, as
you can see on your screen, 13 MOD 6 is indeed 1.

Actually you use MOD all the time, but in another context. Ifitisnow 10 p.m. and
you have 4 more hours of work to do, when can you go to bed? At2 a.m., of course:
(10 + 4) MOD 12 is equal to 2. This kind of counting is called modular arithmetic
(hence the Pascal word MOD) and you do it every day.

Itis a good idea to lump X MOD Y and X DIV Y together in your mind. Both are
integer operators in the same sense that + and - are called integer operators. They
go together in acomplementary way: each one performs adivision of Xby Y, but one
of them (DIV) throws away the remainder, while the other (MOD) reports the
remainder and throws away the integer quotient. If you like formulas, the following
statement is always true:

X =Y times (X DIV Y) + (X MOD Y)

(If you hate formulas, forget it; it isn’t especially important anyway.)
Go to the EDITOR and again change the assighment line as foliows:

CHAOS i= RANDOM MOD 2§

Predict what you will see, and then run the program.

This sequence of zeros and ones could be used in a program to representa coin-
toss or some other two-way situation in which you wanted equal probability on both
sides.

You've probably already figured out that “MOD 1” gives zero all the time. After all,
every integer is exactly divisible by one and leaves no remainder. But what about
“MOD 0”7 Let’s find out.

Again change the assignment line to:

CHAQS t= RANDOM MOD 0

Run again.

Compiling went fine, but you got the run-time error message, “DIVIDE BY
ZEROQ”, plus some other information. Evidently a MOD of zero is illegal. So are
negative MODs. Press the spacebar to start over at COMMAND level.

MORE INVENTED WORDS: FUNCTIONS 111

6-3 BUILDING A BETTER FUNCTION

You now have the tools to build a more usable version of the built-in RANDOM
function. It is rare that a program of yours will need random numbers between zero
and 32,767. Typically, you will want a set of numbers somewhere between a lowest
and a highest value. Of course, the particular values of these extreme numbers will
be different from application to application.

Here is an example. Suppose you want to generate random musical notes in the
octave between pitch numbers 24 and 36. It would be very nice to be able to do that
by using a new random number function—call it RND—such that the main program
would look as follows:

BEGIN
RANDOMIZE #
FOR COUNT := O TO 200 DO
BEGIN
CHAOS 1= RND (24y 36)%
WRITELN (COUNT, ~ vy CHAOS)
NOTE (CHAOS, 20)
END
END.

If RND existed, it would make your programming job easier; but more important, it
would make the intent of the program clearer to a reader of its text. RND (24, 36)
practically says, “return a random integer in the range 24 to 36.”

Your job now is to build yourself such a function, and you can do it in almost
exactly the same way you did when building procedures in the last session. You
declare each function in a separate FUNCTION block. FUNCTION blocks must
follow the VAR block in the program unit in which the function is defined. (A
program unit can be the main program, a procedure, or another function.)
FUNCTION blocks can go before, after, or among PROCEDURE blocks in the same
program unit. Of course, like any named object in Pascal, they have to be declared in
the text of the program before first use by anything else. For example if you have a
PROCEDURE block and if a statement in the procedure contains the name of the
function, then the FUNCTION block has to precede that PROCEDURE block.

6-4 THE FORM OF THE FUNCTION BLOCK

Your RND block will look like this:

FUNCTION RNII (LOWs HIGH ! INTEGER) ! INTEGER}#
BEGIN
RNDN 3= 7?7
END;

112 APPLE PASCAL

Before going ahead with completion of the assignment statement that ends with
question marks, notice the general form of this block. It is very much like a
PROCEDURE block. It begins with a heading followed always by a semicolon, and
concludes with a BEGIN/END block. (It could also have, between the two, a
declaration section containing a local VAR block and perhaps its own local
PROCEDURE and FUNCTION blocks. This simple example, however, has no
declarations.) The heading begins with the reserved word FUNCTION, followed by
a name of your choice, followed by a parameter list, followed by a type declaration.
Except for the last item and the keyword FUNCTION, the grammatical form of the
heading is exactly like that of the PROCEDURE heading and also of the PROGRAM
heading.

Let's examine that last, distinguishing item. Why is there a type declaration both
inside the parameter list (within the parentheses) and after the parameter list
(beyond the parentheses)? The phrase “: INTEGER” inside the parentheses should
be familiar to you from your work with procedures. It tells that the parameter
variables, LOW and HIGH, are of type integer. When the main program calls RND, it
must supply the function with data values that are integers.

But, what about the second “: INTEGER” type declaration? The answer is that it
refers to the type of the function itself. Remember, from your work in Session 3 with
the built-in PADDLE function, that every function must have a name, a value, and a
type. The final declaration says that your function RND is of type integer. That
means that it will return integer data values to the calling program. The writer of the
program that calls RND has to know that fact and has to use the word RND onlyina
place where integer constants would also be legal to use. (If not, then the compiler
would report our friend, the “type conflict error.”)

To summarize a bit, a function is very much like a procedure, both informandin
purpose. Each one is a defined process. Each process is set in action by a call, or
reference, made when some statement containing its name is executed. The only
difference is that a procedure call is performed by a statement that consists of
nothing more than the name of the procedure. In contrast, a function call is made by
using the name of a function in any Pascal statement where a constant of the same
type could also have been used.

A function always returns an item of data of that same type. In effect, the data
item it returns “takes the place of the name of the function” wherever it appeared in
the calling program. -

Now let's see how it is that you can specify the number that your RND function is
going to return. First of all, there is a grammar rule and it is very simple: somewhere
in the BEGIN/END block of the FUNCTION block, there has to appear some
statement that will assign a value to the name RND. We have written that statement
somewhat sketchily before as

RND ¢= 777

In this example, then, RND gets a value by appearing on the left side of an
assignment statement within the function definition. Thus, the function will return
as a value, whatever is computed on the right side of the assignment operator.

MORE INVENTED WORDS: FUNCTIONS 113

The only place in a Pascal program where it
is legal to have a function name appear on the
left side of an assignment statement is within
the BEGIN/END block of the definition of that
function. It would be illegal, and make no
grammatical sense, for the main program to
say this:

RND' (3, 9) = 87

6-5 DEFINING FUNCTION RND

Let's get back now to the completion of your definition of RND. We have to
replace all those question marks with some computation that will produce random
integers in the range between LOW and HIGH. How do you compute the numbers?
Well, you know that RANDOM gives random numbers from zero to 32,767. You know
that RANDOM MOD N gives random numbers starting at zero and extending up to
N-1. So, it looks like you should subtract LOW from HIGH to get the range of
numbers, right? And then add LOW to the result, so that the numbers will start not at
zero but at LOW, right? Well, do it.

Go to the EDITOR and change the program NOISE to the following text. You will
have to use CTRL-A here to see the right half of the Pascal page when you type the
FUNCTION line.

PROGRAM NOISE$#
USES AFFLESTUFF#

VAR
CHAOS» COUNT ¢ INTEGERS$

FUNCTION RND (LOWs HIGH ! INTEGER) ! INTEGER$
BEGIN
RND = LOW + RANDOM MOD (HIGH - LOW)
END;}

BEGIN
RANDOMIZE S
FOR COUNT := 0 TO 200 DO
BEGIN
CHAOS != RND (245 36)}%
WRITELN (COUNT, ‘v CHAOS)#
NOTE (CHADS» 20)
END
END.

114 APPLE PASCAL

Check it carefully. Run the program.

Itseems okay, doesn’tit? The notes are all in the same octave and seem randomly
distributed. In fact, there’s a subtle bug in your program. If you are unusually sharp-
eyed, you may have caught it. Look at the numbers on the screen while the program
is running.

If the program has stopped, run it again. While it is running type CTRL-S from
time to time and inspect the numbers. Type CTRL-S again to start the program
going again.

The problem is that you aren’t getting all the pitch numbers out of RND that you
asked for. You are okay at the low end, where a value of 24 shows up once in a while.
But you asked for a top pitch of 36. Look closely—no 36.

This is an example of the most famous and most common bug in computing: the
Off-By-One Bug. You wanted a top pitch of 36, but you got only as far as 35. You will
get to know this creature very well.

Let's see what happened. Quickly, without thinking at all, answer this question:
“How many numbers are there in the range 7 to 12?” The answer is 5, right? Twelve
minus 7 is 5, so the answer must be 5, okay? No, not okay. There are 6 numbers in the
range 7 to 12: 7, 8, 9, 10, 11, and 12. You always have to add one after taking the
difference between the numbers that define the two ends of the range.

Return to the EDITOR and change the assignment statement in the FUNCTION
block to read:

Run the program. Now it is working as you asked it to, reaching a high pitch of 36.

There is only one sure defense against the
Off-By-One Bug: substitute simple numbers
into your expressions and see whether they
work out.

In your case, the actual numbers you used will do. With LOW =24 and HIGH =36,
HIGH - LOW = 12. Well, RANDOM MOD 12 gives numbers in the range zero to
eleven. Adding LOW (24) to that gives numbers in the range 24 to 35, not 36. Clearly,
we needed to add one to HIGH - LOW to fix the error. This trick, substituting simple
numbers for variables and then checking the results by hand, will save you many
hours of grief.

6-6 PROGRAM REFINEMENTS

You can make a few additions to program NOISE that will let you control the
sounds by means of the paddle control knobs. Most of what follows in this section
will be review, by the way.

MORE INVENTED WORDS: FUNCTIONS 115

Go to the EDITOR and change the second parameter in your NOTE procedure
call so that it looks like this:

NOTE (CHAOSs FADDLE (1))

Run the program and use paddle one to speed up and slow down the sequence of
sounds.

You can use the other paddle to control the bottom note of the octave out of
which the notes are picked at random, rather than have them always come out of the
octave between 24 and 36. Let KEY be the name of the bottom note. We want random
pitches in the range between KEY and KEY + 12.

Go to the EDITOR and change the RND parameters as follows:

CHAOS = RND (KEYr REY + 1205

Two tasks remain. You have to declare KEY to be a variable, and you have to assign a
value to it before it is used. The goal is to have paddle zero control KEY. As you
remember, the PADDLE function will return numbers between zero and 255; but the
range of good musical notes is only zero to 50. That means KEY must be zero or
larger, but KEY + 12 shouldn’t be greater than 50. That limits KEY to between zero
and 38. We come close to thatrange if we use PADDLE (0) DIV 7 as the value for KEY.
(What exact range does this correspond to?)

From the EDITOR, add KEY to the VAR block, and add an assignment statement
for KEY. The revised program should look like this:

PROGRAM NOISE#
USES APPLESTUFF}$

VAR ,
CHAOSs COUNT» KEY ¢ INTEGER$

FUNCTION RND (LOWs HIGH ¢ INTEGER) ! INTEGER?
BEGIN
RND := LOW + RANDOM MOD (1 + HIGH - LOW)
END?

BEGIN
RANDIOMIZE $
FOR COUNT := O TO 200 DO
BEGIN
KEY t= PADDLE (0) DIV 7§
CHADS = RND (KEYs KEY + 12)}
WRITELN (COUNTs ‘ ‘y CHADS)}$
NOTE (CHAOSs PADDLE (1))
END
END.

Now run program NOISE a few times, controlling it with the two paddle knobs.

116 APPLE PASCAL

6-7 ADDING COMMENTS TO YOUR PROGRAM

If you use a clear, consistent indentation style when you write Pascal programs,
and if you choose meaningful names for things, the text of your programs will
usually be self-explanatory. Once in a while, however, there may be a need to add a
word or phrase to help clarify a meaning or distinguish similar-looking words from
one another. For example, the last two lines of program NOISE contain the word
END. The first END closes the FOR statement, while the second one closes the
entire program. (In longer programs itis notuncommon to see three or four ENDs in
a row.) Adding a word or two of comment would help clarify the situation. This
section shows how to do that.

Change the NOTE statement as follows:

Run the changed program. |f you succeeded in surrounding the NOTE statement
by the symbols (* and *), then you saw that it was effectively deactivated when you
ran the program. Everything else worked as before, but there was no sound.

Go to the EDITOR again and change the last two lines of the FOR statement as
follows:

(X WRITELN (COUNT, ° ‘s CHAOS)j
NOTE (CHAOSs, FADDLE (1)) %)

Run again. This time the program ran, but there was no output. It appears that all of
the text enclosed by the symbols (* and *) simply vanished from the compiled
program. In fact, that is exactly what happened. The symbols are called comment
brackets. If aspace occurs between the parenthesis and the asterisk, the result is not
a comment bracket. When the Pascal compiler comes upon the opening bracket, (*,
it simply ignores all characters until it finds a closing bracket, *).

In the example above, you have used this feature of the Pascal compiler to
comment out a part of your program without actually deleting the text. This practice
is often useful while debugging a long program. You can, for example, add four or
five extra WRITELN statements to output intermediate results useful in figuring out
what is going on. Then you can selectively comment out the ones that are not useful
at the moment.

That, however, is not the main use of comment brackets. Instead, they giveyou a
way to add to the text of your program those helpful phrases we talked about at the
beginning of this section. The following listing shows an example of the use of
comments to clarify the intent of program NOISE. Delete the comment brackets now
in your program. Then add the following changes:

MORE INVENTED WORDS: FUNCTIONS 117

PROGRAM NOISE$

USES AFFLESTUFF

VAR
CHAOSy COUNTs KEY ! INTEGER?$

FUNCTION RND (LOWy HIGH ¢ INTEGER) ¢ INTEGER?#

(X RANLOM INTEGER IN RANGE LOW. HI

BEGIN
RND ¢= LOW + RANDOM MOD (1 + HIGH - LOW)
END} (X RND Xx)

BEGIN
RANDOMIZE$
FOR COUNT (= O TO 200 DO
BEGIN
KEY $= PADIMLE (0) DIV 73
CHAOS (= RND (KEYy KEY + 12)3%
WRITELN (COUNT» ~ v CHADS) $
NOTE (CHAOSs PALDLE (1))
END (X% FOR %)
END.

Check these changes carefully. Run the program to check for errors. The result
should be exactly the same as for the version you ran at the end of Section 6-6.

There is one horrible user trap that comes along with comments, and now is a
safe time to fall into it. Go to the EDITOR and delete the asterisk in the closing
comment bracket of the first comment in the program text. What do you think will
happen when you try to compile this program? Where does the first comment end?
Run the program and find out. Then return to the EDITOR.

Understanding what went on was fairly easy in the present case, because you
were conscious of the cause of the problem. But if the missing asterisk had been an
unnoticed typing error, you would have been very hard pressed to figure out why the
compiler complained that RND was an “undeclared identifier”. It was obviously
declared in the FUNCTION heading. The problem is that the FUNCTION heading is
(by accident) inside the initial comment, which doesn’t get closed until the symbol *)
is reached after the FUNCTION heading. The USES block and the VAR block are
also part of the comment.

Beware of unclosed and improperly closed
comments.

118 APPLE PASCAL

Restore the asterisk that you removed from the initial closing comment bracket. Run
once more to make sure all is in order.

6-8 FILING YOUR PROGRAM AWAY

Program NOISE is now in shape for writing out on your PROGRAM: diskette and
saving for future reference. You learned how to do that in Section 4-9, and thisis a
good opportunity to review the steps.

At EDITOR level, type Q W. The screen prompt is this:

FQUITS
NAME OF OUTFUT FILE (<CR> TO RETURNy --—

Remove APPLEO: from the drive and insert your diskette PROGRAM:. Type
CTRL-A. Then type the diskette name and the file name as follows:

FROGRAMINOISE
Press RETURN. Type CTRL-A again. The new screen prompt is this:

FQUIT

WRITING. »

YOUR FILE IS 607 BYTES LONG.

[0 YOU WANT TO E(XIT FROM OR R(ETURN TO

Remove PROGRAM: from the drive. Re-insert APPLEO:. Type R.

At this point you have added a new file named NOISE.TEXT to your PROGRAM:
diskette. A copy of the same program is also in your EDITOR workspace, and
another copy is on APPLEQ: in the workfile.

It is essential in this process to have the right diskette in the drive atthe right time.
If APPLEQ: is in the drive when you press RETURN after typing PROGRAM:NOISE,
the writing-out operation fails, but no great harmis done. You juststart over witha Q
W. Butif PROGRAM: isinthedrive when you type R (or E) in the final step, you arein
trouble, since PROGRAM: lacks the necessary system files, such as SYSTEM.EDI-
TOR. The computer gives up in despair and tries to do a cold-start reboot, putting
the message APPLE][at the top of the screen. If that happens, remove whatever
diskette is in the drive, replace it with APPLES:, and follow the regular boot-up
procedure. The EDITOR workspace will have been lost, but the APPLEO: workfile
will still be intact.

MORE INVENTED WORDS: FUNCTIONS 119

6-9 MORE ABOUT THE EDITOR

You should now be back in the EDITOR and on your screen you should see a
copy of program NOISE exactly as it was at the end of Section 6-7. Now that you
have safely tucked away a copy of NOISE on your PROGRAM: diskette, this is a
good time to exercise a few new features of the EDITOR without worrying about
losing information. Furthermore, the text is now long enough to use commands that
would have been useless before.

We begin with tools for moving the cursor around in the workspace, starting with
a revew of the J(UMP command. Type J E. Type J B. These commands put the
cursor at the end and beginning of the text. They give the biggest moves possible.

Now let’'s do a slightly smaller big move. Type P. This command moved the
cursor about one page (23 text lines) down the screen. Type P again. As before, it
tried to move forward a full page, but this time there were not enough lines. The
cursor moved to the end of the text.

Next, let's take even smaller steps. Type J B to get back to the beginning. Then
type 5 and press RETURN. Type 10 and press RETURN. Type / and press RETURN.
These experiments show that a numeric prefix, followed by RETURN, has the same
effect asan equal number of RETURNSs. Thatis, 3RETURN is equivalentto RETURN
RETURN RETURN. You also saw that/ RETURN meant to issue as many RETURNSs
as possible. The effect was the same as J E.

Type 4 CTRL-O. Type 20 CTRL-0. Type 10 CTRL-L. These experiments show
that the numeric-prefix idea also works with CTRL-O and CTRL-L. Type 22 and
press the right-arrow key. Type 22 and press the left-arrow key. Type 22 and press
the spacebar. Type / and press the left arrow. As you probably guessed, the number
or slash prefix works in the same general fashion with all of the cursor-move
commands in the EDITOR.

Now for another new wrinkle. Press the RETURN key about ten times. Notice the
greater-than sign (>) just before the word EDIT in the prompt line. Type the key that
has the comma and the less-than sign (<) on it. Notice that a less-than sign now
appears before EDIT. Now press the RETURN key a few times. The symbol in front
of the word EDIT establishes what is called the set direction. The effect of the
RETURN key at EDIT level is determined by the set direction. The normal direction
is forward, indicated by a greater-than sign (>), and causes a RETURN to move the
cursor forward to the start of the next line. The reverse direction, indicated by a less-
than sign (<), causes a RETURN to move the cursor backward to the start of the
preceding line.

Now let’s see what else is affected by the set direction. With the reverse direction
set, type the right-arrow key a few times. Type the left-arrow key. Type CTRL-L.
Type CTRL-0. These keys move the cursor in fixed directions, irrespective of the set
direction. Press the spacebar a few times. The effect is a backspace because the set
direction is backwards.

Type J B. Type J E. Type P. Type the key that has the period and greater-than
sign (>) on it. Notice that a greater-than sign again appears in front of the EDIT
prompt. Type another P. This experiment shows that the P(AGE command moves
the cursor one page in the set direction, but that the J(UMP command is not affected
by the set direction.

To summarize a bit, you have found that the RETURN, spacebar, and P keys
move the cursor in the set direction. The other cursor-move keys are unaffected by

120 APPLE PASCAL

the set direction. The direction may be set forward by the period, greater-than, and
plus keys; it may be set backward by the comma, less-than, and minus keys.
There is another nice way to move the cursor to a location defined not by the
number of steps to get there but by the text that is to be found there. For example, if
you wanted to find the first occurrence of the NOTE call, here is all you would have
to do. Type J B. With the direction set to forward, type F. You see this prompt line:

FINDC1Id: LCIT <TARGET: =
Type the following response:
/NOTE/

As you saw, the cursor was moved just beyond the first occurrence of the word
NOTE as soon as you typed the second slash. If your response had been

+NOTE »

the result would have been identical. The slash or period is called a delimiter. You
can choose any delimiter thatis not aletter ora number. The word you type between
delimiters must be a complete word in the text of your program and not just a
fragment, such as OTE, if the search is to be successful. F(IND is affected by the set
direction. A numeric prefix to F tells which occurrence to search for. A slash prefix
means to find the /ast occurrence.

So much for moving the cursor about while at EDIT level. Next, let's see how to
make it easier to enter long lines and to read them. So far, you have been using
CTRL-A to toggle the viewing window back and forth to each half of the Pascal
page. The problem with that is that you lose the context of the line you are trying to
read or type. The Apple Pascal EDITOR gives you another option, called horizontal
scrolling. Move the cursor to the beginning of the FUNCTION RND heading. Type
CTRL-Z. Press the right-arrow key repeatedly and notice what happens as the
cursor approaches the right side of the screen. Keep pressing the right-arrow key
until the cursor moves to the next line.

This mode is especially nice when you are typing long lines into the computer,
since the window moves right along with the new letters you type. Type CTRL-A to
leave the horizontal-scroll mode. When you do so you will sometimes end up
looking at the right half-page and sometimes at the left. Another CTRL-A will getto
the other half, as usual.

The last EDITOR command to be introduced in this session is the X(CHANGE,
which is nothing more than a shortcut for combining a D(ELETE with an |(NSERT.
Suppose you wanted to change the first FOR statement so that it counted from zero
to 832 instead of zero to 200. Here is the shortcut. Move the cursor to the 2 in 200.
Type X. Type 832. Type CTRL-C. That's all there is to it. Note that this approach
works only when the number of characters is the same before and after the
exchange. Also, you cannot make an exchange beyond the end of a text line. ESC
get’s you out of the X(CHANGE mode without changing the workspace.

MORE INVENTED WORDS: FUNCTIONS 121

SUMMARY

The mostimportant things you learned in this session were the grammar rules for
declaring functions and for calling them into execution. You saw how to declare the
type of the function in the heading of the FUNCTION block, and how to use an
assignment statement within the FUNCTION block to specify the value to be
returned by the function. You learned that a FUNCTION block goes after the VAR
block in the program and comes before, among, or afterany PROCEDURE blocks or
other FUNCTION blocks. You also were told that a procedure or another function
could have a locally defined FUNCTION block within it.

In addition to these fundamental facts about functions, you also experienced a
few other things.

B You used the RANDOM function (defined in APPLESTUFF) and found that it
produced a chaotic-looking stream of numbers between zero and 32,767.

® You used the RANDOMIZE procedure (defined in APPLESTUFF) to generate a
random seed for the sequence of numbers produced by RANDOM.

B You found that the integer expression X MOD N gave a value equal to the
remainder of X divided by N; and that X DIV N gave the integer quotient.

® You used RANDOM MOD N to generate chaotic-looking integers in the range
Zero to N-1.

® You met OBOB, the famous Off-By-One Bug and found a strategy for fixing it.
B You refined a random tone program to use paddle input for more user control.

B You used comment brackets (* and *) both to comment-out program segments
and to add explanatory text.

B You used the Q W exit option from the EDITOR and saved the workspace copy of
your program in a named file on the PROGRAM: diskette.

B You used the P(AGE command to move the cursor a page at a time.

B You saw that a number or a slash preceding a cursor move command in the
EDITOR caused a repetition of the command.

® You saw how to change the set direction, and found that the RETURN, spacebar,
P, and F commands each moved the cursor in the set direction.

B You used the F(IND command to move the cursor to a selected word in the text.
B You used CTRL-Z to set horizontal scroll mode.

® You used the X(CHANGE command as an delete/insert shortcut.

122 APPLE PASCAL

Tables 6.1A and 6.1B show the expanded command level structure of the Apple
Pascal system. Since there will be no major additions to these tables in the
remainder of the book, only the cumulative Pascal vocabulary tables will be given in
future sessions. The complete command level structure is given in Appendix D.

Table 6.1A Amplified table of the EDITOR levels of Apple Pascal. Those features
studied in this session are shown in bold face type.

Exit to escape
from accidental

entry
E(ditor ESC RETURN orQ E
Q(uit editor and R
U(pdate workfile
E(xit with no update
R(eturn to editor Q
W(rite to named file RETURN

Cursor Moving Commands

Right-arrow (Move cursor right)

Left-arrow (Move cursor left)

CTRL-L (Move cursor down)

CTRL-O (Move cursor up)

RETURN (Move cursor to beginning of next line)

Spacebar (Move cursor to next character)

J(ump to ESC
E(nd of text
B(eginning of text

P(age move

F(ind text pattern ESC

Text Changing Commands

I(nsert text ESC
CTRL-C (Normal exit)

D(elete text ESC
CTRL-C (Normal exit)

C(opy text from ESC
B(uffer

X(change characters ESC

CTRL-C (Normal exit)
Formatting Commands

~ A(djust indentation
CTRL-C (Normal exit)

MORE INVENTED WORDS: FUNCTIONS 123

Table 6.1B Amplified table of other command levels of Apple Pascal. Those
features studied in this session are shown in bold face type.

Exit to escape
from accidental

entry.
F(iler
Q(uit the filer F
N(ew workfile RETURN
V(olumes on line
L(ist the directory RETURN
C(hange name RETURN
T(ransfer a file RETURN
D(ate setter RETURN
? Show additional commands RETURN
R(un program in workspace
I(nitialize the system
Commands Available at Any Level
CTRL-A Toggle to other half of CTRL-A
Pascal page
CTRL-S Stop and restart screen CTRL-S
output
CTRL-Z Set horizontal scroll CTRL-A

RESET Attempts reboot of Pascal

124 APPLE PASCAL

Table 6.2 Cumulative Pascal Vocabulary. New words introduced in this session
are printed in bold face. (Code: a = defined in APPLESTUFF)

Reserved Built-In Built-In Other
Words Procedures Functions Built-Ins
PROGRAM WRITE Integer Types
USES WRITELN a PADDLE INTEGER
VAR a NOTE a RANDOM
PROCEDURE a RANDOMIZE Units
FUNCTION APPLESTUFF
BEGIN
FOR
TO
DOWNTO
DO
END
DIV

MOD

MORE INVENTED WORDS: FUNCTIONS 125

QUESTIONS AND PROBLEMS
1. What are the results of these integer expressions?
a.13DIV 5
b. 13 MOD 5
c.5DIV 13
d. 5 MOD 13
e.5MOD 5
f. 5 MOD 1
g-5MOD 0
h. 5 MOD -5

2. Given anumber N, how can you use MOD to tell whether it is exactly divisible by
17? How can you use DIV for the same purpose?

3. Suppose the 37th day of the year is a Monday. How can you compute whether
the 237th day will be a Monday? If it isn't a Monday, how can you tell what day it
is?

4. How can you tell whether a given number is even or odd?

5. One common way for a computer to produce random-looking sequences of
numbers is the following:

a. Pick a 2-digit seed and a 2-digit factor.
b. Set the next-number equal to the seed.
c. Multiply the next-number by the factor.
d. Remove the units digit and and thousands-digit (if there is one).

e. Let the next-number equal the two inner digits. (This is the beginning of the
random sequence of numbers.)

f. Repeat steps c through f.

Experiment with this procedure. Start with a factor of 37 and aseed of 1. Find the
first dozen or so numbers produced. (A pocket calculator will help.)

126 APPLE PASCAL

10.

11.

12.

13.

14.

15.

16.

17.

18.

. Change the seed in Question 5 and repeat. Are there “bad seeds”?
. Change the factor in Question 6 and repeat. Are there “bad factors”?

. If function HENRY is declared within procedure GEORGE, does the main

program know about the existance of HENRY?

. In Question 8, is avariable declared by HENRY known to GEORGE? Is a variable

declared by GEORGE known to HENRY? |Is HENRY known to GEORGE?
Why does the type of a function have to be declared?
What kind of statement is used to give a function its value?

Write the complete FUNCTION block for a function that returns the square of an
integer. (N*N equals the square of N.)

Change the assignment statement of the function in Question 12 to make it
return the fifth power of N.

Referring to the FUNCTION RND as defined at the end of Section 6-5, decidein
each case below whether the call to RND is legal or not. If not, explain why.

a. X:= RND (2, 2)

b. Z := RND (2, 1)

c. Q := RND (-10, 10)
d. R := RND (0, 32768)
e. M := RND (0, 98.6)

Which cursor move commands in the EDITOR are affected by the setdirection?
List all of the keys that can change the setdirection when used at the EDIT level.

Explain what a numeric prefix and a slash do when used with cursor moving
commands.

Suppose the workspace is 35 lines long, and each line has at least 20 characters.
Where will the cursor be after each of the following sets of key presses:

a.JB
b.J B.9 RETURN

c.J E, 9 RETURN

19.

MORE INVENTED WORDS: FUNCTIONS = 127

d.JB/CTRL-L

e.J B + 6 spacebar

f.JB>P<P

What key presses would you use to find:

a. the first occurrence of the word BEGIN in the workspace.
b. the second occurrence of the word BEGIN.

c. the last occurrence of the word BEGIN.

SESSION

SEVEN

DRAWING PICTURES

The functions and procedures that you learned to define in the last two sessions
are the basic building blocks out of which all but the simplest Pascal programs are
composed. The existence of these types of program units is your invitation to break
any larger programming problem into smaller “chunks” which can be attacked one
at a time. The functions and procedures that you define will determine the overall
“shape” that your program takes.

With this topic behind you, you have already reached an important plateau in
your understanding of the organization of Pascal programs into program units. You
have also learned nearly all of the Apple Pascal system commands that will be
needed in this book. (For that reason, we now stop reproducing the table of system
commands at the end of each session.) At this point, you have learned your way
around the EDITOR and the FILER, and you can write a fairly long, multipart
program.

There is more to learn, but it will all proceed on the solid base established so far.
There are more statement types; one new one appears in this session and two more
in the next. There are additional data types beyond the integers you have been
using. And there are new elementary capabilities, such as graphic output. That is the
main topic of this session.

SESSION GOALS

In this session your main task will be to learn how to generate line drawings on
the screen. You will learn about a new data type called boolean. You will be
introduced to the REPEAT statement, which is used to control looping in a way
different from the FOR statement. You will learn the difference between constants
and variables. You will write a graphic procedure.

7-1 PADDLE SKETCH

Carry out the standard startup steps: boot up Pascal, set the date, inspect the
workfile, clear it out if necessary, and, finally, enter INSERT mode in the EDITOR.

129

130 APPLE PASCAL

These items, which are probably old hat to you by now, make your computer
ready for you to type in a new Pascal program and then move it into the now empty
workfile. You should see the INSERT prompt at the top of the screen, the cursor at
the left of the line below it, and an otherwise blank screen.

Type in the following program.

ROBRM;;SSEIDH'

Eu’

TURTLEGRAPHICS: AF’F‘LESTUFF?
VAR
Iy X’Y’ WAIT

t INTEGER$

EGIN .
‘ INITTURTLE §
- PENCOLOR (WHITE) b
FOR I i= 1 T0 ﬂooo oo
: BEGIN 4 ‘
i= FADDLE co>a
FOR WAIT = 1 TO 3 ﬂ09
4= PADDLE (1)}
MOVETO (X» Y)
. END (% FOR %)
END.

Check each line carefully as you enter it, using the left-arrow key to delete errors.
Leave INSERT via CTRL-C. Check the semicolons especially carefully. If you find
errors, use DELETE/INSERT to repair them.

There are a few new things and several old things in this program. Starting at the
top, the name of the program is SKETCH. It has a USES block, which you saw in the
last two sessions, but this time there are two words following USES: TURTLEGRA-
PHICS as well as APPLESTUFF. The first and second statements in the main
BEGIN/END block, INITTURTLE and PENCOLOR (WHITE), are both new. The
third statement is the familiar FOR statement.

Within the FOR statement there is a compound statement, bracketed by BEGIN
and END. It contains four simple statements. The firstis an assignment. The second
is the simplest form of the FOR statement, since the word DO is followed by a null
statement and a semicolon. The third statement is another assignment. The fourth
statement, MOVETO (X, Y), is a new procedure call. Note that three semicolons
separate the four statements making up this compound statement. No semicolon is
needed after the fourth one because the word END brackets it. Note similarly that
two semicolons separate the three statements that make up the main BEGIN/END
block of the program. The third statement (the outer FOR statement) is not followed
by a semicolon, since it is bracketed by the final END.

First of all, you should recognize that there are no new statement varieties here.
INITTURTLE, PENCOLOR, and MOVETO are examples of the familiar procedure
call statement. Other examples are WRITELN and NOTE. You will be seeing a new
statement variety in this session, so keep your eyes peeled.

DRAWING PICTURES 131

Yourimmediate goal is to understand these new elements in your program and to
see how they work together. From the EDITOR, type Q U R to run the program. (If
there are compile-time errors, go back to the EDITOR, fix them, and run again.)

Turn the knobs on your paddles back and forth, first using one paddle at a time
and then using them together. If time runs out, type R and run again. What position
does paddle zero control? What about paddle one? Recall that the PADDLE function
returns the number zero when the knob is all the way to the left (counterclockwise)
and 255 when all the way to the right. What position on the screen corresponds to
zero for paddle zero? Zero for paddle one? 255 for paddle one? Try to draw asquare
as large as possible; is its top visible on your screen?

Return to the EDITOR after you’ve finished these experiments.

You've probably guessed that all the action is going on in the compound
statement of the outer FOR loop. Let’'s examine these statements. The firstone is a
familiar assignment statement, like the one you used in Session 4. It inputs the
current setting of paddle zero, returns a number between zero and 255, and assigns
that value to the variable named X. The next statement is a make-work loop, which
you also used in Session 4 to allow the required amount of time between paddle
inputs. The third statement assigns to variable Y the value corresponding to the
setting of paddle one. The last statement, MOVETO (X, Y), is the only new one here,
and it is the one that causes graphic output to your screen, just as WRITE and
WRITELN cause text output and NOTE causes sound output.

Perhaps the easiest way to understand how the MOVETO procedure works is by
imagining that you are giving commands to a little creature who can crawl about
your screen and who posesses a set of pens. For historical reasons, we’ll call this
little fellow a turtle, though you've already seen that this particular turtle can crawl
pretty fast.

The effect of MOVETO (X, Y) is to move the turtle to a point that is a distance of X
from the left edge of the screen and a distance Y from the bottom edge. The turtle
moves to the new point along a straight line path from wherever it was when
MOVETO was called. While moving, the turtle draws a line with whichever pen color
it currently holds.

The turtle is left in its new position until told to do something different. Because
the paddle inputs and the MOVETO statement occur inside a FOR loop which goes
from one to 2000, the turtle is getting a sequence of 2000 commands to move to
positions with X and Y values determined by your paddle settings. If you don’t
change either paddle control, the turtle moves to where it already is, so you don’t see
any action. If you change only paddle zero, only the X value (the distance from the
left edge of the screen) changes. The turtle moves on a horizontal line. If you change
only paddle one, then only the Y value (the distance from the bottom edge) changes.
The turtle moves up and down. If you change both paddles at once, you change both
X and Y and the turtle moves diagonally.

132 APPLE PASCAL

MOVETO is very powerful. With it, a
program can draw any figure that can be
represented by a sequence of straight line
segments.

7-2 DRAWING IN COLORS

Let’s investigate the notion of pencolors referred to in the above section, where
we said that as the turtle moves it “draws a line with whichever pen coloritcurrently
holds.” You have probably guessed where in the program SKETCH the turtle is told
what pen color to use: it's the PENCOLOR (WHITE) statement just before the outer
FOR loop. Let’s change it to another color.

From the EDITOR, use DELETE and INSERT to change WHITE to ORANGE.
Back at the EDIT level, type Q U R and run the program. Go back to the EDITOR,
change ORANGE to BLUE or GREEN, or VIOLET, and run again.

If you have a color TV display, then you saw that the turtle can draw lines in
several colors.

7-3 A NEW PASCAL STATEMENT: THE REPEAT LOOP

You probably have begun to feel that these experiments would be a lot easier to
doif the program loop wasn’t always set to exactly 2000 steps. Sometimes it ran out
before you were ready to quit, and sometimes you had to wait for it to run out. What
you'd like is some way to have the steps repeat again and again until you signal that
you're ready to quit.

Well, folks, you're in luck: the Pascal language has the words REPEAT and
UNTIL in its vocabulary, and they mean just what you'd expect. To use them in
program SKETCH you’re going to make two changes. The text beginning with “FOR
I :=" and ending on the next line with “BEGIN” will be deleted and replaced by the
word “REPEAT”. The word “END” on the line after MOVETO (X, Y) will be deleted
and replaced by the text “UNTIL BUTTON (0)”. (That's a zero between parentheses,
not an O.) Use INSERT, DELETE, and ADJUST to change the main BEGIN/END
block of your program to look like this:

BEGIN
INITTURTLE$
FENCOLOR (WHITE)$
'REPEAT
X t= FADDLE (0)3
FOR WAIT $= 1 TO 3 DOj
Y $= FANDLE (1)9§

DRAWING PICTURES 133

(If you want to be very tidy, you can also delete “l,” from the VAR block, since | is not
used anywhere in the new version.)

From the EDITOR, type Q U R and run the new version.

Don't be alarmed when the program runs on and on. How do you stop it? Try
pressing the little button on paddle zero. What happened? Type R to run again, and
again press button zero. Return to the EDITOR and inspect the program.

You have changed your main program from a FOR loop to a REPEAT loop. The
FOR loop always results in a predetermined number of repetitions, butthe REPEAT
loop continues again and again until some stated condition comes true.

Here’s an important item of nomenclature: we refer to all six lines of text in your
REPEAT loop as forming a single REPEAT statement. Remember that in Pascal the
division of text into lines is fairly arbitrary. As far as the definition of the language is
concerned, a single statement can appear on one line or on many lines. A statement
can start in the middle of one text line and continue until the middle of the next. We
will not commit such stylistic blunders in this book, and you shouldn’t either; but the
point here is that you will have a much clearer idea of the way Pascal statements are
defined if you stop thinking about lines of text and start thinking of larger structures.

Note, for example, that the single REPEAT statement in program SKETCH
contains four statements within it. This concept will come as a surprise to people
familiar with languages like Basic or Fortran, where each statement is a thing unto
itself. In Pascal, the majority of statements contain other statements. You have now
seen two examples: the REPEAT and FOR statements.

Now let's see what the formal definition of the REPEAT statement is. Every
grammatically correct REPEAT statement must fit the following format rule:

REPEAT statement(s) UNTIL condition

That is, it begins with the reserved word REPEAT, followed by one or more
statements, followed by the reserved word UNTIL, followed by an expression that
can be either true or false. If there are several statements in the body of a REPEAT
statement, they must be separated by semicolons, as usual in Pascal. It is also legal
to have no text (except a space of course) between REPEAT and UNTIL; our friend
the null statement takes care of the legalities in that case. Note here that BEGIN and
END are not required around the body of the REPEAT loop, since REPEAT and
UNTIL serve the same purpose of bracketing the set of statements in the body.

The following example shows that you can use a REPEAT loop to get the same
effect as the FOR loop that you have been using.

I = 14
REPEAT

(kx RODY OF LOOF X)

I ¢=1+ 1
UNTIL I > 2000

134 APPLE PASCAL

In this case the condition, “l > 2000” is false while | is less than 2000 or equal to 2000,
but becomes true when | reaches 2001. But, by means of the statement before
UNTIL, each time through the loop, one is added to the old value of | and the result is
assigned back to |. Hence, the body of the loop will be done 2000 times.

Now let’s look again at the REPEAT loop in your program SKETCH. The only
element that still needs explanation is the phrase BUTTON (0) after UNTIL.
According to the grammar rules of the REPEAT statement, the thing that follows
UNTIL has a true or false value. In fact, BUTTON satisfies that requirement.

You've probably guessed that BUTTON, like PADDLE is a function that gets
input and returns a value. PADDLE gets input from the rotating knob and returns as
a value some integer between 0 and 255. BUTTON gets input from the little button
switch on the paddle housing, and it returns a value thatis either true (if the button is
being pressed) or false (if not pressed).

Since true and false are not integers, you're probably wondering about the type
of function BUTTON. It is certainly not of type integer is it? In fact, itis aPascal data
type called boolean (after George Boole, the great logician). Other languages often
call this type /ogical. Don’t worry about the name: the important thing to remember
about functions and variables of type boolean is that they can only take on values
equal to true or false. The BUTTON function is of type boolean and so is the
expression “l > 2000”, which you saw earler in this section. Both can take on only
these two values.

So far in your study of Pascal you have found only one kind of statement that
uses boolean expressions: the REPEAT statement. In the next session you will meet
the IF statement, the Pascal statement that most often uses boolean expressions.
Since you will get much more experience there, we’ll drop the subject now and
return to graphics.

7-4 INVISIBLE LINES AND BACKGROUND COLORS

You may have realized that we are missing an essential graphic tool for drawing
pictures. We've seen how to make the turtle draw lines in white, orange, blue, green,
and violet. But, how do you move the turtle to a new starting location without
drawing a line? If that capability were lacking, you'd be pretty limited in the kind of
drawings you could make. Well, try this experiment.

Edit your program so that the PENCOLOR line looks like this:

FENCOLOR (NONE) 3§

Run the changed program. Press button zero when you get bored.

You may feel that seeing nothing happen is pretty unexciting. (If so, you
probably weren't too turned on by the null statement either.) But getting nothing to
happen is sometimes of critical importance. By using the color value NONE in the
PENCOLOR statement you have succeeded in moving the turtle all over the screen
without leaving a trace. By alternating between NONE and WHITE, say, you could
draw any set of disconnected lines. We won'’t pursue that right now, because it
would change the program quite a bit to do so.

DRAWING PICTURES 135

Instead, let's see what we can do about the background color. So far it's always
been black. Edit your program so that the main body looks like this:

BEGIN
INITTURTLE$
ﬁENCULOR*(BLﬁCK)i‘“
FILLSCREEN (WHITE)#
REPEAT
t= FADDLE (0)$
FOR WAIT (= 1 TO 3 DO}
t= PADDLE (1)%
MOVETO (X» Y)
UNTIL BUTTON (0O)
END.

There are only two changes. First, you have used a new color, BLACK, for the turtle’s
pen. Second, you have introduced a new graphic command, FILLSCREEN, with the
color WHITE.

Run the new version, exercise the two paddies, and finally quit by pressing
button zero. Return to the EDITOR. Change BLACK and WHITE to ORANGE and
BLUE, or VIOLET and GREEN, and run again.

Procedure FILLSCREEN obviously does just what its name suggests: it fills the
screen between certain boundaries, using whatever color was passed as a
parameter to the procedure.

7-5 RANDOM SKETCHING

The combination of random numbers with graphics is often quite wonderful to
see. In this section you will change two lines of your program and get a significant
change of output.

Enter the EDITOR and change the REPEAT loop so that it looks like this:

REPEAT
X 1= RANDOM MOD 2803}
Y = RANDOM MOD 192%
MOVETO (X» Y)

UNTIL BUTTON <0O)

You recall from the last session that the expression “RANDOM MOD N” gives an
approximately random integer lying in the range zero to N-1. Thus these changes
will result in X getting a random value between zero and 279and Y getting arandom
value between zero and 191. Why these particular ranges?

136 APPLE PASCAL

The numbers 0, 278, 0, and 191 define the
extreme left, right, bottom, and top of the
visible points on your Apple |l screen.

In effect, therefore, this program now picks random visible points and draws
lines from one to the next. Run the new version and watch. Press button zero as
usual to quit.

7-6 LOOPS INSIDE OF LOOPS

After running your program for a while, the screen gets pretty well covered with
lines. It would be nice to erase and start over without stopping the program. Here’s
one way to do that:

Return to the EDITOR and change the body of your program to look like this:

BEGIN
INI I IURILFJ

REPEAT
t= RANDOM MOD 280;
Y $= RANDOM MOD 1924
MOVETO (Xs Y)
UNTIL BUTTON (0)
UNTIL BUTTON (1)
END.

Except for new indentation, the important thing that you have done hereistoinserta
new REPEAT after PENCOLOR, and a new UNTIL BUTTON (1) before END. In
effect, you have now nested one REPEAT loop (the old one) inside another REPEAT
loop (the new one). The body of the inner loop will be repeated until BUTTON (0)
has the value true, as in the past. The body of the outer loop will be repeated until
BUTTON (1) is true. But the inner loop is part of the body of the outer loop, so the
situation is a little subtle.

Think it over a while. Then run this new version. What happens when you press
button zero alone? What happens when you press button one alone? What happens
when you press both together? Why? Return to the EDITOR and study the program.

It's a good strategy in understanding any program to go at it line by line, starting
at the top. In this case, the first statement is acall to INITTURTLE. (Don’t worry now
about what it does.) Next, PENCOLOR sets the pen to WHITE. Next we enter the
outer REPEAT loop. Next FILLSCREEN (BLACK) does what its name implies: turns
every point on the screen black. Continuing to read down the program text, we enter
the inner REPEAT loop. Within that loop, X and Y get random values and the turtle
moves to the corresponding point, drawing a line.

DRAWING PICTURES 137

The next line of textis UNTIL BUTTON (0), which closes the inner loop. If button
zero is not being pressed, then the BUTTON (0) function is false, and the inner loop
is repeated, adding a new line to the screen. (Note that while the program is in this
innerloop, itis not even examining the state of button one, so itwon’t matter whether
or not you press it at this time.)

If button zero is pressed, then BUTTON (0) becomes true and the inner loop
stops looping. We go to the next line of the program and find UNTIL BUTTON (1),
which closes the outer loop. If at this particular instant, button one is not being
pressed, then the entire outer loop gets repeated. The first statement in the outer
loop is FILLSCREEN (BLACK); so the screen is restored to black, erasing all the
lines that were drawn on it previously. The next statement in the outer loop is the
inner REPEAT statement. So, almost immediately, the program is back in the inner
loop, drawing random lines and waiting for button zero to be pressed.

Now you can see why both buttons have to be pressed at the same time to stop
the program: button zero has to be pressed to get out of the inner loop. At that
instant, button one is examined. If it is being pressed then, the outer loop stops
looping and the program ends.

Run the program again and make sure that it behaves the way we said. Then
return to the EDITOR.

7-7 A LESSON IN USER-ENGINEERING

From the point of view of the user of this program, who may have no idea how it
was written, itwould have made much better sense if each button had its own unique
function, instead of requiring the user to press both buttons at the same time to end
the program. A small change will do that.

Go to the EDITOR andinsert“ORBUTTON (1)” after “UNTILBUTTON (0)”. The
two UNTILs should now look like this

UNTIL BUTTON (0) OR RUTTON (1)
UNTIL BUTTON (1)

This change requires a little explanation, since it introduces the new word OR.
However, its meaning is the same as the common meaning of the English word “or”.
In the present case the entire expression

BUTTON (0) OR EBUTTON (1)

is true if either BUTTON (0) orBUTTON (1) istrue or if both are true. The expression
is false only if BUTTON (0) and BUTTON (1) are both false.

In the present situation, that means that the inner loop will quit if either button
zero or button one is held down. But the outer loop will quitonly if button oneis held
down. From the point of view of the user, therefore, button zero means “erase and
start over”, while button one means “stop the program”. The two buttons seem to
function independently.

138 APPLE PASCAL

This kind of careful attention to the way the
user sees a program—the so-called “user
interface”—is the single most important thing
for programmers to learn. It makes the differ-
ence between programs that are friendly,
forgiving, conversational, and humane and
others that are hostile, rigid, obscure, and
machine-like.

Run the changed program and confirm the fact that button zero and button one
now appear to function independently.

7-8 COUNTING PASCAL STATEMENTS

The present short program gives a good opportunity to deal with a source of
confusion about the text of a Pascal program. How many statements do you think
there are in the main BEGIN/END block of program SKETCH? Count them now and
find out.

That sounds easy, but it really isn’t. What does counting mean in the case of a
statement such as FILLSCREEN (BLACK) that is part of another statement? Insome
sense it is fair to say that the program contains only three statements: INITTURTLE,
PENCOLOR (WHITE), and the outer REPEAT statement. Yet it obviously also
contains assignment statements, other procedure calls, and another REPEAT
statement. One could count as many as eight different statements.

The way out of this confusion is to talk about /levels of detail. At the outermost
level of detail there are only the three statements described above. But one of them,
the REPEAT statement, contains two statements within it. Furthermore, the second
one of those is another REPEAT statement containing three simple statements
within it. In the following listing of the main BEGIN/END block we show a way of
talking about the “statement number” of each statement in the program.

Line Statement Frodram

BEGIN

INITTURTLE$

FENCOLOR (WHITE)$

REPEAT

FILLSCREEN (BLACK)$
: REPEAT
3.2.1 X = RANDOM MOD 2803
3.2.2 Y i= RANDOM MOD 1924
3.2.3 MOVETO (X» Y)
UNTIL BUTTON (0)
UNTIL BUTTON (1)
END.

LI =

3

Frrzue=Iaonmmooxd
J b

DRAWING PICTURES 139

At the coarsest level of detail, program SKETCH has three statements, the third
of which extends from lines D through K. Looking at it more finely, we see that
statement 3 contains two statements, 3.1 and 3.2. Looking at 3.2 more carefully, we
find that it contains three statements; 3.2.1, 3.2.2, and 3.2.3. Using thisapproach you
can see, indeed, that SKETCH contains only three statements, but it also contains
eight statements.

You should notice that we have always used indentation of the text of our
programs to call attention to the way that Pascal statements are nested within one
another. As you become more familiar with statement nesting, you will also discover
that you understand when semicolons are required and when they are not needed.
For example, line H needs a semicolon to separate statement 3.2.2 from 3.2.3. But
line | does not need a semicolon since there is no statement 3.2.4. Likewise, line J,
which ends statement 3.2, needs no semicolon because there is no statement 3.3;
and line K, which ends statement 3, needs no semicolon because there is no
statement 4. If you now inserted a statement after line K, it would become statement
4, and you would have to go back to the UNTIL in line K and add a semicolon.

7-9 CONSTANTS

The following statements have appeared in the last several versions of your
program:

1]

(ANDIOM MOD 280%
YANDOM MOD 192

—(
T
iou

-

You know what the numbers 280 and 192 mean, because you have just been working
with them: 280 is the width of the screen and 192 is the height. But how would these
statements look to someone else who was reading your program and who might not
be aware that the Apple graphic screen had these dimensions? Or, how would they
look to you a few months from now when you may have forgotten the significance of
these particular numbers? And, even if you remember them, will you also recognize
140 and 96 as being the middle of the screen? What about 210 and 144? What do they
represent? The recognition problem gets much harder in longer programs, which
might easily be sprinkled with a mixture of numbers, each with its own meaning in
the proper context, but hard to recognize by its literal appearence as a numberina
program statement.

There is another important consideration that bears on this issue. Suppose that
your program is scattered with literal numbers like 280, 140, 70, 210, etc., all of which
derive from the actual width of the screen. Now, suppose you want your existing
program to run on a different Pascal computer system which has a screen that can
plot 320 or 512 points horizontally. To change your program you would have to read
it carefully, locate all of the subtle ways that 280 and its relatives had been included
in the text, and then laboriously edit each one to conform to the correct numbers for
the new screen width.

140 APPLE PASCAL

What to do? Well, for a start, you could certainly clarify the intent of your program
by writing the statements like this:

= RANDOM MOD WIDTHj
= RANDOM MOD HEIGHT

Substituting the words, WIDTH and HEIGHT, for 280 and 192 makes your meaning
vastly clearer than itwas. In alonger program that had to make use of the pointat the
middle of the screen, WIDTH DIV 2 and HEIGHT DIV 2 are much more obvious than
the mere numbers, 140 and 96.

Part of the solution to the problem is clear: it is always better to use meaningful
names for things than to use literal numbers. But how can one do that in Pascal?
Well, you already know one way to do that. You could declare WIDTH and HEIGHT
in the VAR block as new variables of type integer. That would get the names into
existence, all right, but it would not give any values to those names. Youwould have
to take care of that toward the beginning of your BEGIN/END block, probably by
means of assignment statements such as these:

WIDTH = 280%
HEIGHT = 192

prior to the first use of those names elsewhere in the text of the program.
Furthermore, you would have to take care that no later statements assigned new
values to these variables.

That course of action would be the recommended one indeed, if Pascal did not
offer an even better solution. What you really need is something which has two
properties: a meaningful name and an unchangeable value, once it is specified.
Such objects are called constants in Pascal, and are different in concept from
variables, which may change in value throughout the program.

Let's include the constants WIDTH and HEIGHT in your present program. Go to
the EDITOR and change your program so thatithas the CONST block and changed
assignment statements shown below:

DRAWING PICTURES 141

PROGRAM SKETCH#

USES
TURTLEGRAPHICSy» APPLESTUFF#

CONST
WIDTH = 2804
HEIGHT = 192%

VAR
Xy Y 1 INTEGER?#

BEGIN
INITTURTLE#
PENCOLOR (WHITE)#
REPEAT
FILLSCREEN (BLACK)#
REPEAT
X = RANDOM MOD WIDTHS#
Y = RANDOM MOD HEIGHT#
MOVETO (X» Y)
UNTIL BUTTON (0) OR BUTTON (1)
UNTIL BUTTON (1)
END.

Note carefully the grammar and punctuation rules for the CONST block. After the
reserved word CONST there appears a sequence of phrases of the general form

name = literal-constant semicolon

The name is up to you, subject to the usual rules that apply to any Pascal
names—i.e., it must start with a letter and be followed by zero or more letters or
numeric digits or both. After the name there comes an equal-sign, not a colon-
equal-sign. This is not an assignment operation, but rather a definition of the very
meaning of the word. After the equal-sign there must be a literal constant. In the
case of integer numbers, for example, a literal constant is just the set of characters
that you ordinarily use to write the number down on paper. It is not grammatically
correct to write

WIDTH = 140 + 140%

since “140 + 140” is not a literal constant. Note also, that the type of a constant is
never declared explicitly. That isn’t necessary, after all, since the type is evident by
looking at the literal constant: 280 is obviously an integer. Last of all, note that each
constant definition always concludes with a semicolon.

So much for the CONST block in the declaration section of your program. What
about the use of such defined constants? Well, for openers, the name of a constant,

142 APPLE PASCAL

once defined, can by used in most places just like the name of a variable. Your
program, for example uses WIDTH in the expression

RANDOM MOD WIDTH

and there is no way to tell, just by inspecting that expression, whether WIDTH is a
constant or a variable (or a function, for that matter). The usage rule for named
constants is actually a little different than for variables. The name of a constant can
be used anywhere in a program, including the declaration section itself, where the
literal constant it stands for would also be allowed. You will see examples of this in
Session 11.

Check the program text carefully, and then run it. There should be no change in
its behavior.

To drive home the point about the unchangeability of Pascal constants, let’s
make one more change. Go to the EDITOR and insert the following line just before
the X assignment statement:

Run the changed version, and note the error message. Then delete the above line.
The reason you got the error message is exactly the reason you wouid get one if
you had included the statement

That just doesn’t make sense and Pascal says so, whether you use a literal constant
or a named constant in a nonsensical way. The truth of the matter is that naming a
constant is just specifying another way to “spell” the literal constant. In your
program, the five characters “W-1-D-T-H” here have exactly the same meaning as
the three characters “2-8-0". Once given in the CONST block, there was no way to
take that meaning back, or to change it in the remainder of the program. Thatis what
a constant is.

The addition of the CONST block brings to five the number of distinct types of
blocks that can appear in the declaration section of a Pascal program. They are the
USES, CONST, VAR, PROCEDURE, and FUNCTION blocks. All except the USES
block may also appear in the declaration section of procedure and function
definitions. The first three blocks are similar in that there can be no more than one of
each in a program, and the blocks have to appear in that order: USES, then CONST,
then VAR. PROCEDURE and FUNCTION blocks, if any, must occur after the other
blocks; there may be several of each and they may be intermixed with one another.
Later you will learn about a few additional blocks allowed in the declaration section,
but the ones you have used thus far are the main ones that you are likely to see in
most Pascal programs.

DRAWING PICTURES 143

The scoping rules for names, which you learned in Session 5, apply also to
named constants. If declared in the main program they are known globally.
Constants declared in a procedure or function are local to itand to all its direct lineal
descendents.

7-10 VIEWPORTS

So far, you have been drawing pictures on the whole screen of your TV display.
There will be times when you want to limit the picture to a smaller part of the screen.
Return to the EDITOR and add the following line immediately after INITTURTLE:

VIEWFORT (70y 210y 0y 100)

Run the changed program.

This experiment shows you how to define limits for your picture. The numbers
(of type integer) in your call to the VIEWPORT procedure define the left, right,
bottom, and top of a rectangle on the screen. No graphic output will occur outside
that rectangle, called the “viewport”, until it is changed. Line segments that cross a
viewport boundary are ‘“clipped” so that only the interior part is drawn.
FILLSCREEN fills the viewport only. The full dimensions of the screen are achieved
by VIEWPORT (0, 279, 0, 191), which is exactly what you get if the program contains
no VIEWPORT statement. A program can contain more than one VIEWPORT
statement; each one (potentially) redefines the viewport; and there is only a single
viewport in effect at one time.

7-11 TURTLEGRAPHICS AND INITTURTLE

You've undoubtedly been wondering about these words and their meanings.
They have been in each of the programs you have written in this session. In order to
discover their meanings, let's delete them, one at a time, and see what happens.

Return to the EDITOR. Delete TURTLEGRAPHICS and the comma after it. Run
the program.

You got compile-time error 104. Type E and read the error message at the top of
the screen. Since the cursor is now just to the right of INITTURTLE, thatis the word
that is being complained about as being an “undeclared identifier”.

Remember that in Pascal, all names (identifiers) have to be defined (declared)
prior to their first use. Without the word TURTLEGRAPHICS in the USES block, you
get the error message; with it, you don't. You saw a similar situation with
APPLESTUFF in Session 4. TURTLEGRAPHICS is a special package of graphic
routines, stored on APPLEQ: in file SYSTEM.LIBRARY. It is there that the names
INITTURTLE, FILLSCREEN, VIEWPORT, PENCOLOR, and MOVETO are defined,
along with the colors BLACK, WHITE, BLUE, ORANGE, GREEN, VIOLET and
NONE. If you leave TURTLEGRAPHICS out of the USES block, then all these names
are undefined.

Press the spacebar. Reinsert TURTLEGRAPHICS and the comma. Delete
INITTURTLE. Run the program.

144 APPLE PASCAL

You do not get an error this time, but you don’t get a picture either. The
“RUNNING...” message suggests thatall isin order. Is your program running? Press
button one and see whether it stops as it should.

The INITTURTLE statement is necessary before any other graphic statements
are executed. It takes care of initializing several things so that future graphic activity
will take place properly. Most notably, it sets your TV display into graphic mode.
When any Pascal program first starts running, the TV display is in text mode. When
WRITE or WRITELN statements are executed, they output characters which are
visible on the screen when in textmode. This is because WRITE and WRITELN send
their output to what we have been calling the Pascal page, the left half of which is
normally visible on your screen.

In fact, there are really two Pascal pages:
the text page and the graphic page. The Apple
window looks out at only one or the other, but
both exist at the same time. A program can be
invisibly outputting text to the text page while
the graphic page is visible on the screen, and
vice versa.

The main thing that INITTURTLE does is to erase the graphic page and to setthe
Apple window so that it is looking at the graphic page. (In addition, it sets
PENCOLOR to NONE, puts the turtle in the center of the graphic page, and sets the
viewport to be the full screen.) If INITTURTLE is left out, the program may run
correctly, but you will not see any graphic output because you are still looking at the
text page.

The TURTLEGRAPHICS unit contains two additional procedures that enable
you simply to switch the Apple window back and forth between the graphic page
and the text page. Neither one changes what is on the pages. The statement

TEXTMODE

is a procedure call that sets the Apple window to the text page. Likewise, the
statement

GRAFMODE

is a procedure call that sets the window to the graphic page. No parameters are
passed to either procedure. We will not explore TEXTMODE or GRAFMODE now,
but they will be useful in cases where you need to use both text and graphic output.

Return to the EDITOR and restore INITTURTLE and a semicolon to your
program.

DRAWING PICTURES 145

7-12 MAKING YOUR OWN GRAPHIC PROCEDURES

The TURTLEGRAPHICS unit defines all the graphic procedures that you have
used in this session. The ones you have seen, plus one or two more, are the basic
tools you have available for all your graphic tasks. As you have used them you must
have gotten the impression that they are quite primitive tools. In fact, people in the
computer world would refer to this set of procedures as the graphic primitives,
meaning that everything else has to be built out of these procedures. Search asyou
may, you won't find in TURTLEGRAPHICS any procedures for drawing squares, or
circles, or graphs, or pie charts. It is up to you to create those procedures yourself.

Your work in Session 5 and 6 showed you a general method for defining and
naming your own procedures and functions. In this section you will use that method
to create a procedure to draw a rectangle of any size on the screen at any location.
Such a procedure might be used, for example as a building block in another graphic
program or to box in some text in a program that mixes text with graphics on the
graphic page.

Before defining the details of this procedure, let's first agree on a name foritand
on the data to be passed to it that will specify the precise rectangle to be drawn. We’'ll
call the procedure BOX, as areminder that it will draw a rectangular box. The data to
be passed to BOX when it is called will have to tell (a) how big the box is and (b)
where it is to be drawn. There are many ways to do that. For example, we could pass
to BOX the width, height, and location of the lower-left corner (two more numbers).
Or else we could pass the location of the lower left and the upper-right corners. Or,
we could pass the width, height, and location of the center. Once we decide on the
meaning of the data to be passed, we must next decide on the order in which the four
items of data are to appear in the parentheses after BOX in the call statement.

In one sense, it doesn’t matter how you decide these questions. Any one of the
above specifications will work and is sensible. Despite that fact, this is not the time to
toss a coin or make a thoughtless decision. Whenever you define a procedure or a
function, you are making an extension to the language. It is always a good idea to
think about the language and to look around for existing linguistic models for what
you want to do. If you find one, then make your extension “sound like” or “have the
flavor of” words and patterns already present. If you do that, the result will have a
natural quality that makes it easy to learn, easy to use, and easy to remember.

It so happens that TURTLEGRAPHICS does indeed have a nice model for your
BOX procedure. It is the VIEWPORT procedure, which also specifies a rectangular
area on the screen, as you have seen. The four items of data for VIEWPORT are the
locations at the left, right, bottom, and top of that rectangle, as measured from the
left edge or the bottom edge of the screen in each case. Obviously, you will find it
easier to learn, use, and remember the BOX procedure if it uses these same pieces of
data in the same order.

Now we turn to the task of declaring procedure BOX and specifying the detailed
drawing instructions the turtle will need to draw the box. A reasonable set of
instructions would be these:

1. Move to the lower-left corner, without drawing a line.

2. Draw a horizontal line to the lower-right corner.

146 APPLE PASCAL

3. Draw a vertical line to the upper right.
4. Draw a horizontal line to the upper left.

5. Draw a vertical line to the lower left.

Here is a direct, line-for-line translation of those instructions from English into
TURTLEGRAPHIC primitives:

FROCEDURE EROX (l.y Ry By T § INTEGER)?

BEGIN
FENCOLOR (NONE)>§ MOVETO (Ly E)§
FENCOLOR (WHITE)§ MOVETO (Ry R)§
MOVETO (Ry T)#
MOVETO (Ly T)3
MOVETO (Ly R)5¥

ENDF Ok ROX %)

Note that once the pen color is set to white, it stays that way; therefore, the last three
lines of the BEGIN/END block don’t need a PENCOLOR call.

This procedure, like ones you wrote in Session 5, has a parameter list with several
variables, L, R, B, and T declared as integers. The names are chosen to remind a
reader that the order of the parameters must be left, right, bottom, and top. In the
main body of BOX, these parameter variables are used in the five calls to MOVETO.
Look at the first one:

MOVETO (Ly R)§

It says, in effect, “Move to the left-hand, bottom point of the rectangle.” That is the
lower-left corner. The other moves can be understood in the same way.

Go to the EDITOR and insert the PROCEDURE BOX declaration into your
program text. Remember to put it after the VAR block.

Now let’s use our new word by calling BOX in the main program. It would be easy
enough to modify the main BEGIN/END block to make your program draw random
rectangles on the screen. All that is necessary is to select two random horizontal
positions (one for the left edge and the other for the right) and two random vertical
positions (for bottom and top). Then, call BOX with these four values.

Below is the complete program. The name has been changed. The VIEWPORT
call has been deleted. Variables have been added or changed. The main
BEGIN/END block has been changed. Edit your program to look like this:

DRAWING PICTURES 147

FROGRAM EOXES#

USES

TURTLEGRAFHICSy AFFLESTUFF$
CONST

WIDTH = 280%

HEIGHT = 1924

VAR e o
C Xls X2y Yis Y2 ¢ INTEGERS

FROCEDURE BOX (L» Ry By T ! INTEGER)$

BEGIN f =
~ PENCOLOR (NONE)# MOVETO (Ls B)§
FENCOLOR (WHITE)$ MOVETO (Ry R)§
MOVETO (Ry T)# :

~ MOVETO (L, T)#

MOVETO (Ls B) =

 END# Ok BOX %) —

BEGIN
INITTURTLE$
FENCOLOR (WHITE)#
REPEAT
FILLSCREEN (BLACK)#$
REPEAT
X1 3= RANDOM MOD WIDTH$
X2 $= RANDOM MOD WIDTH$
Y1l ¢= RANDOM MOD HEIGHTS$
Y2 t= RANDOM MOD HEIGHT#
BOX (X1l X200 Yie ¥Y2) .
UNTIL BUTTON (0) OR BUTTON (1)
UNTIL RUTTON (1)
END.

Check the changes carefully. Then run the new program. As before, button zero
erases the screen and button one stops the program.

After running the program a few times, you might like to keep a copy of it, under
its own name, on your PROGRAM: diskette. You can do that from the EDITOR by
using the Q W option. See Section 4-9 for details.

SUMMARY

During this session, you learned the following new things about Pascal:

® You found that TURTLEGRAPHICS must be declared in the USES block if
graphic commands are in a program.

® You learned that INITTURTLE must be used in a program before graphic
commands to initialize the graphics package.

148 APPLE PASCAL

® You saw that PENCOLOR is used to set the color of drawings on the screen.

® You used the MOVETO (X, Y) to cause the turtle to draw a line from its present
position to the new screen position X and Y.

® You used the REPEAT/UNTIL statement to loop until the condition following
UNTIL was true.

® You metanew type of data called boolean which can take on only the two values:
true or false.

® You saw that OR can connect two boolean expressions with the same meaning
as the English “or”.

B You learned that the turtle can be moved from one position on the screen to
another without drawing a line by employing PENCOLOR (NONE).

® You found out the difference between a variable and a constant.
® You learned to declare constants in a CONST block, ahead of the VAR block.

® You used the VIEWPORT command to restrict graphic output to a specified part
of the graphic page.

® You wrote a graphic procedure.

The last part of the summary is to update the Pascal vocabulary table.

Table 7.1

DRAWING PICTURES 149

Cumulative Pascal vocabulary. New words introduced in this session

are printed in boldface. (Code: a = declared in APPLESTUFF; g =
declared in TURTLEGRAPHICS)

Reserved
Words

PROGRAM
USES
CONST
VAR
PROCEDURE
FUNCTION

BEGIN
FOR

TO
DOWNTO
DO
REPEAT
UNTIL
END

DIV
MOD

OR

Quuuuuuuwua “» L

Built-In
Procedures

WRITE
WRITELN
NOTE
RANDOMIZE
FILLSCREEN
GRAFMODE
INITTURTLE
MOVETO
PENCOLOR
TEXTMODE
VIEWPORT

QUESTIONS AND PROBLEMS

Built-In
Functions

Boolean
a BUTTON

Integer
a PADDLE
a RANDOM

Other
Built-Ins

Constants
g NONE

g WHITE

g BLACK
g GREEN
g VIOLET
g ORANGE
g BLUE

Types
BOOLEAN
INTEGER

Units
APPLESTUFF
TURTLEGRAPHICS

1. What is meant by aboolean variable? How is it different from an integer variable?

2. What will happen if you attempt to use screen graphics withoutthe INITTURTLE
command in your program?

3. Suppose you use the line

REPEAT UNTIL BUTTON (0)#

in a program. What would its effect be?

4. How is the Apple window switched from the graphic page to the text page? How
is it switched back to the graphic page?

150 APPLE PASCAL

10.

11.

12.

13.

. Can you write on the text screen while looking at the graphic screen?
. How do you set the background color of the graphic screen?

. Write a program to generate and display on the screen random integers between

0 and 100. Use button zero to stop the program.

. Explain why procedure BOX (Section 7-12) works even if R < L or T <B. In these

cases, what is the order of the lines drawn by BOX?

. The problem is to generate rectangles of varying size on the screen. Write a

program to draw black rectangles on a white screen. Each time you press button
zero, a new rectangle whose size and location is chosen randomly is to be drawn
on the screen. Make sure that all such rectangles fit on the screen. Use button
one to stop the program.

Write a program to draw a tic-tac-toe diagram (black lines on awhite screen)ina
viewport that occupies the upper right quarter of the screen.

Modify program SKETCH (the version in Section 7-9) to draw random black
lines on a white screen in a viewport occupying the lower left quarter of the
screen. Choose all the random points inside the viewport so that there is no
clipping of lines. Use button zero to stop the program.

Write a program to draw horizontal white lines on a black screen. The lines are to
be started at some random point on the screen and extend to the right arandom
part of the remaining length to the right edge of the screen. Stop the program
with button zero.

Write a program to cover a white screen with black grid lines (both horizontal
and vertical) spaced 20 screen units apart starting at the lower left corner of the
screen.

SESSION

EIGHT

BRANCHING STATEMENTS: IF AND CASE

You have already met two of Pascal’s five control statements. In Session 4 you
learned to use a FOR statement to control the repeated execution of a simple or
compound statement some predetermined number of times. In Session 7 you used a
REPEAT statement for a similar purpose, except that the repetition continued until
some logical condition became true. The FOR and REPEAT statements provide /loop
control over other statements that make up the body of the loop. In Session 9 you
will meet the WHILE statement, Pascal’s third and final kind of loop control
statement.

In this session you will learn about two new statements, IF and CASE, that allow
branching control over other statements. By using IF and CASE statements you will
be able to write a program that does different things under conditions established by
the branching logic of the program. Without these two new statements, all of your
programs would have no choice but to march through all statements in succession,
possibly looping back over some or all of them. Very few practical computer
programs could be written without using branching control statements.

SESSION GOALS

Your main goal is to understand how to use IF and CASE statements to control
execution of various alternative sets of statements in a program. Along the way you
will use variables of a new type called CHAR, and will gain further experience with
variables and expressions of type BOOLEAN. You will use the built-in READ and
READLN procedures to get user input into a running program. You will write a
BOOLEAN function. You will learn to use three new graphic procedures.

151

152 APPLE PASCAL

8-1 A SIMPLE TWO-WAY BRANCH

Boot up Pascal. Set the date. Clear out the workfile. Go to the EDITOR/INSERT
level and enter the following program:

PROGRAM QUESTIONS

ANSWER ¢ CHAR?$

BEGIN
WRITE (‘IS EVERYERODY HAPF‘Y‘? ‘)
. READLN (ANSWER)#$
_ WRITELN (‘/THE ANSWER IS ', ANSWER)
END.

CTRL-C out of INSERT mode. Check for typing errors and fix any you find.

This initial program has two new features: a variable of type CHAR, and a call to
procedure READLN. The best way to learn their meanings is by experimentation.
Run the program. You should see

RUNNING. ..
IS EVERYERODY HAFFY?

on the screen; then everything halts. What is happening? Look at the first line in the
BEGIN/END block. You have seen the WRITE statement many times before. It
produced the question “IS EVERYBODY HAPPY?” on the screen. The fact that
nothing is happening now probably has something to do with the next line—the
READLN statement. The name of the procedure implies its function. READ is the
opposite of WRITE. If WRITE and WRITELN output information on the screen, then
READ and READLN should input information from somewhere. Any ideas where?
The most likely candidate at this point has to be the keyboard. The variable in the
READ parameter is of type CHAR, a new data type which you haven’t seen before.

Let's try a keystroke on the keyboard to see if that will get the program running
again. Press the Y key and then the RETURN key.

What happened? You should have seen “THE ANSWER IS Y” written on the
screen. At the top of the screen you should ree the COMMAND line which indicates
that the program has finished running. Our hunch that READLN asks for
information from the keyboard seems to be correct since the program finished as
soon as you pressed Y and then the RETURN key. 0ORun the program a few more
times, each time typing aresponse and pressing RETURN. These experiments show
that a call to READLN causes a program halt until the user types something, ending
with a RETURN. Then an attempt is made to assign to the variable in the READLN
parameter list a value equal to what was typed by the user. In the present case the

BRANCHING STATEMENTS: IF AND CASE 153

variable, ANSWER, was of type CHAR, which is the Pascal abbreviation for
character. So the initial character of the string of characters that the user types is
assigned as the value of ANSWER. Finally, the third statement in your program
writes the value of ANSWER on the screen. Note that WRITELN accepts parameters
of type CHAR as well as INTEGER.

Now that you know how to get user input from the keyboard into a running
program, let's see how to use that input to control the operation of the program.
Replace the WRITELN line with the five new lines shown below.

BEGIN
WRITE (‘IS EVERYERODY HAFFY? ‘)%
READLN (ANSWER) §
IF ANSWER = ‘Y’ THEN
WRITE <’GOOD ‘)
ELSE
WRITE C(‘BAD “)}%
WRITELN (‘NEWS’)
END,

Note that there is only a single semicolon in the five new lines you added. That
means you have added only two Pascal statements. The interesting one begins with
the reserved word IF, is four lines long, and contains two other unfamiliar reserved
words, THEN and ELSE. Familiar calls to the WRITE procedure follow these two new
reserved words. Thus you can see just from the general grammar rules of Pascal that
the IF statement contains other statements within it.

We’ll come back to this point in a moment. Now run the program. Type aY in
answer to the question on the screen. Press RETURN. What happened? Why did it
happen?

Well, does the message “GOOD NEWS” make sense in light of the fact that the
character “Y” was typed in? Look at the line following READLN (ANSWER). There is
a condition stated there, and it is “IF ANSWER ="Y"". The letter you typed in at the
keyboard was assigned to the variable ANSWER so ANSWER is equal to Y. But the
statement says that if ANSWER does equal Y THEN what? The next line is the
statement WRITE (‘GOQOD’), which is the source of part of the message you saw on
the screen.

So far, so good. If the condition is true, evidence points to the fact that the
statement following THEN will be executed. What do you suppose will happen if you
type in a character other than Y? Let’s find out.

Press R again to run the program. This time, enter N and press the RETURN key.
This time you got “BAD NEWS” displayed on the screen and you probably saw this
coming. If the condition following IF is true, the statement following THEN is
executed. If the condition following IF is false, the statement following ELSE will be
executed. The IF/THEN/ELSE structure works exactly the way you would expect it
to when you read it.

Note that either the statement following THEN was executed or else the
statement following ELSE was executed, depending upon the condition following
IF. But in either situation the statement following the entire IF statement

WRITELN (“NEWS’)

154 APPLE PASCAL

was executed. The IF statement in your program contains two branches, only one of
which was taken when you ran it. After that branch was completed, the statement
after the entire IF statement was executed. That is how the complete message
“GOOD NEWS” or “BAD NEWS” was constructed on your screen.

Let's vary the program. Return to the EDITOR and change the BEGIN/END block
to the following:

BEGIN
WRITE (/I8 EVERYRODY HAFFY? “)§
READLN (ANSWER)
IF ANSWER = ‘Y’ THEN
WRITELN (’HOORAY’)
END.

Note that this time the IF statement contains a THEN branch but lacks an ELSE
branch. What will happen when you run it? Run and see. Type a Y and press
RETURN. Run again, this time typing something other than Y. Press RETURN.
This experiment shows that the IF statement does not need to have an ELSE
branch. If the condition “ANSWER ="Y"" is true, the THEN branch is taken. Butif the
condition is false, the abbreviated form of the IF statement has no effect at all.

8-2 BOOLEAN VARIABLES AND FUNCTIONS

A very small change in your program will introduce a useful new topic. Go to the
EDITOR and change your program so that it looks like this:

PROGRAM QUESTIONS?

VAR
ANSWER ¢ CHAR#
YES ¢ BOOLEANS

BEGIN
WRITE (‘IS EVERYRODY HAFFY? ‘)
READLN (ANSWER)#
YES (= ANSWER = ‘Y’}
IF YES THEN
WRITELN (“HOORAY’)
END.

You have added a new variable whose nameis YES and whose type isBOOLEAN. In
the BEGIN/END block, YES is assigned the value ANSWER ="Y’. What value is that?
Run the program and find out.

Did it surprise you that this version of QUESTION behaved exactly as before?
What you have found out here is that “ANSWER ='Y"" is a legal expression, that it has
avalue of some kind, and that you can assign it to thevariable YES. Since you didn’t
get a “type conflict” error, that must mean that the expression also is of type

BRANCHING STATEMENTS: IF AND CASE 155

BOOLEAN. As you recall from your experience with the BUTTON function, there
are only two BOOLEAN values: true and false. Thus YES is assigned the value true if
ANSWER ="Y’ and the value false otherwise. The name of your program points up
one big difference between the := symbol and the = symbol. The := symbol always
means to assign a value to a variable. The = symbol is used here to compare two
values. It is the result of that comparison that gets assigned to YES.

From there on everything should be fairly clear. The behavior of the IF statement
depends only upon the value of YES. If true, the THEN branch is taken and HOORAY
appears on the screen. If false, nothing happens.

The example you have seen here is slightly artificial, but you should recognize
that the ability to assign a BOOLEAN value to a named variable means that you can
write procedures that operate on these variables without knowing what their values
are. You can also pass BOOLEAN values as parameters to a function or procedure.
Perhaps the most common occurrence of named BOOLEAN objects, however, is
BOOLEAN-valued functions, such as BUTTON. The following change in your
program shows how you might define your own BOOLEAN function. 05S8.7

PROGRAM QUESTIONS?

FUNCTION YES : ROOLEANS
VAR
ANSWER § CHAK®
BEGIN
READLN (ANSWER) $
IF ANSWER = ‘Y’ THEN
YES 1= TRUE
ELSE -
YES = FALSE
END# (X YES %)

BEGIN
WRITE (/18 EVERYROLY HAFFY? 7)§

WRITELN (7HOORAY’)
END.

The main change here has been to convert YES from a variable into a function.
When YES is referred to in the main BEGIN/END block, the result is a call to the
function. The first thing the function does is to call READLN and receive keyboard
input. Note that the variable ANSWER is now local to function YES, since the main
program no longer has need to know about it. Next the function compares ANSWER
to'Y'. If equal, then YES returns the value TRUE; if not, YES returns the value FALSE.
Note that TRUE and FALSE are the “standard spellings” of the two values that
BOOLEAN data can have. Thus, TRUE and FALSE are constants of type BOOLEAN,
just as 'Y’ is a constant of type CHAR, and 24 is a constant of type INTEGER.

Go to the EDITOR and make the above changes to your program. Run it a few

156 APPLE PASCAL

times. The fact that it works the same as before shows that your BOOLEAN function
is doing exactly what we said above.

This example of a BOOLEAN function is fairly typical of their use in other
situations. Notice that the function does more than just return a true or false value. It
also performs the input from the keyboard. A more complete version of function YES
would also verify that ANSWER was equal to either’Y’ or "N’ and, if not, prompt the
user to type one or the other. Then it would repeat the verification. Thus, when the
main program calls YES it is both enacting an input procedure and also determining
which of two possible situations occurred. Thatis a characteristic use of BOOLEAN
functions.

8-3 READ AND READLN

Run the program for each of the keyboard inputs listed below. In each case,
watch what happens in response to your input.

YES
YOOHOO
NO
NURILE
sracebar
WHOOFEE !

Now let's review what happened. You saw that Y, YES, and YOOHOO caused
HOORAY to be written out. Only the first character of the input is assigned to the
variable ANSWER. Anything beginning with Y results in Y being assigned to
ANSWER, which in turn causes HOORAY to be printed out. Anything other than
input beginning with a Y will cause nothing to be displayed.

Go back to the EDITOR and delete the LN in the READLN statement. Leave the
EDITOR and run the program. After the message IS EVERYBODY HAPPY?, press
the Y key but not the RETURN. What happened? The point of interest here is
whether or not the RETURN key is required after a character is typed in.

Run the program again, but this time type the letters R F D in quick succession,
but again don’t press the RETURN key.

Well how did you wind up in the date-setting facility? It's simple. If you were
watching the screen you saw that as soon as you pressed R, the program decided
that ANSWER was not equal to Y, and it ended. The computer went back to the
COMMAND mode and looked for further instructions. Recall that the computer
stores up commands when more than one letter is pressed in succession. Of course
the next letter you typed in was F, which called the FILER. Then the D moved you
into the date-setting facility. This another of the user traps that you can stumble into
occasionally.

Press RETURN and Q to get back to the COMMAND level.

Changing READLN to READ had two effects. First, the program halt was ended
as soon as you typed a single character. Second, since you did nottypea RETURN,

BRANCHING STATEMENTS: IF AND CASE 157

he text on your screen at the end of the run looked like this

IS EVERYBODLY HAFFY? YHOORAY

when you typed a Y in response to the question. If you want “HOORAY" to appear on
the next line, you will have to make the program itself output a RETURN immediately
after the input. Change the READ line in function YES as follows:

Run againandtypeaY. Thistime “HOORAY" should have appeared on the next line.

8-4 THE SEMICOLON BUG

Change the main BEGIN/END block as follows:

BEGIN
WRITE (‘I8 EVERYBODY HAFFY? ‘)#
IF YES THENj?
WRITELN (‘HOORAY’)
END.

Run it. Type Y. Run again. Type N. Why did the insertion of the semicolon after
THEN cause “HOORAY” to be written on the screen no matter what you typed in
response to the question?

The explanation here is quite simple. Adding the semicolon after THEN had the
effects of signalling the end of the IF statement and of removing the final WRITELN
call from the body of the IF. Since it is now outside the IF statement, it is carried out
every time, regardless of what the user typed in answer to the question.

What, then, is the IF statement doing now? The complete statement looks like
this

IF YES THEN#

158 APPLE PASCAL

This may not seem to agree with the form of the abbreviated IF statement:

IF condition THEN statement

since there doesn’t seem to be a statement after THEN. But there is, of course, and it
is our friend the null statement, which you met in Session 4. The upshot of this
experiment is that the accidental insertion of a semicolon after THEN does not
always lead to a compile time error, but it does change the logic of the program.

Watch carefully for extra semicolons within
your IF statements.

In the present example, the null statement is executed if YES is true and not
executed otherwise. (There is no practical difference, of course, since the null
statement doesn’t do anything.) But in either case, program execution continues
with the final WRITELN ("HOORAY’) call, now no longer a part of the IF statement.

It will help you to avoid dropping needless semicolons into IF statements if you
recognize that the reserved words THEN and ELSE, like BEGIN, END, REPEAT, and
UNTIL, act just like punctuation marks themselves. Extra punctuation is never
needed immediately before or immediately after THEN or ELSE. If you find a
semicolon so situated, remove it.

8-5 NESTED IF STATEMENTS

You have seen how an IF statement creates atwo-way branchin aprogram, each
branch of which is a Pascal statement. So far the branch statements have always
been WRITE or WRITELN procedure calls, but they might have been any Pascal
statement, simple or compound. One particularly interesting branch statement
would be another IF statement. The following version of program QUESTION shows
such an example of one IF statement nested within another.

BRANCHING STATEMENTS: IF AND CASE 159

PROGRAM QUESTION#

VAR
WEEKDAY, RAINY ¢ EBOOLEANS

FUNCTION YES ! ROOLEAN#
VAR
ANSWER ¢ CHAR}$
BEGIN
READ (ANSWER)$ WRITELN#
IF ANSWER = ‘Y’ THEN
YES (= TRUE
ELSE
YES = FALSE
END? (X YES X)

BEGIN
WRITE (‘IS TODAY A WEEKDAY?)}
WEEKDAY $= YES)
WRITE (/IS IT RAINING? ‘)¥
RAINY t= YES)
IF WEEKDAY THEN
IF RAINY THEN
WRITELN (‘DRIVE TO WORK’)
_ ELSE _
, NRITELN (‘WALK TO WORK)
ELSE
"IF RAINY THEN
WRITELN (‘GO TO MUSEUM’)
ELSE y
WRITELN (‘FLAY TENNIS’)

END.

Notice that the outer IF statement contains a THEN branch and an ELSE branch.
The THEN branch is a simple IF statement, also containing THEN and ELSE
branches. Likewise, the outer ELSE branch is another simple IF statement with
THEN and ELSE branches. The net result is a four-way branch that depends upon
the combined BOOLEAN values of WEEKDAY and RAINY.

Make the above changes in your program. Run it several times, typing in all four
combinations of Y/N responses to the two questions.

If you have any doubts about how each pair of inputs generates its own output,
you should study the main IF statement and run the program again. Note that the
indentation scheme used in the program text helps to clarify the nesting of the IF
statements. Each ELSE is indented the same amount as the IF that it goes with. To
get the meaning of any particular ELSE, all thatyou have to dois look directly above
it to the IF that has the same indentation. For example, the first ELSE in the main
BEGIN/END block goes with IF RAINY; so it means IF NOT RAINY. The second
ELSE goes with IF WEEKDAY and means IF NOT WEEKDAY.

Another thing to notice here is the lack of semicolons in the ten lines containing
the main IF statement. None is needed or permitted because the THEN branch and

160 APPLE PASCAL

the ELSE branch each consist of asingle simple statement; namely, an IF statement.
Likewise, the branches of each of the inner IF statements are simple WRITELN
statements. Since there are only simple statements, no semicolon separators are
needed.

8-6 THE ABBREVIATED-IF BUG

You saw at the end of Section 8-1 that it is legal to have an |IF statement with only
a THEN branch. While such abbreviated IF statements are very useful and are
common in practical programs, they are also a frequent source of a nasty bug that
can be hard to decipher. We'll lead you into this trap slowly so that you can see how it
happens.

Go to the EDITOR and comment out the outer ELSE branch of the IF statementin
your main program. It should look like this:

IF WEERDAY THEN
IF RAINY THEN
WRITELN (/DRIVE TO WORK’)
ELSE
WRITELN (’WALK TO WORK’)
(X ELSE
IF RAINY THEN
WRITELN (/GO TO MUSEUM’)
ELSE
WRITELN ¢(’FLAY TENNIS’) %)

Run the prgram four times, testing all combinations of Y and N responses to the two
questions. Were there any surprises?

Next, remove the opening comment bracket from the outer ELSE line and place it
in front of the inner ELSE in the next to last line of the main IF statement. Your outer
ELSE branch should now look like this:

ELSE
IF RAINY THEN
WRITELN (/GO TO MUSEUM’)
(% ELSE
WRITELN (‘FLAY TENNIS’) X)

Run it four times, testing all Y/N combinations. As before, there should be no
surprises with this abbreviated IF statement. Three of the combinations (YY, YN,
NY) give appropriate messages, while the fourth (NN) gives no message, since the
corresponding ELSE branch has been commented out.

Delete both comment brackets. Now actually delete the ELSE branch that is
inside the outer THEN branch. Your IF statement should look like this:

BRANCHING STATEMENTS: IF AND CASE 161

IF WEEKDAY THEN
IF RAINY THEN
WRITELN (‘DRIVE TO WORK’)
ELSE
IF RAINY THEN
WRITELN (/GO TO MUSEUM’)
ELSE ' -
WRITELN (‘PLAY TENNIS’)

Run it and test all four Y/N response combinations. Any surprises thistime? The YY
response should have been okay: you should have seen the rainy weekday message
“DRIVE TO WORK?”. But the YN response probably surprised you. You deleted the
branch for a weekday with no rain, so you probably expected to get no message at
all. Instead you got the sunny weekend message, “PLAY TENNIS”, which makes no
sense for a weekday. The other two response pairs, NY and NN, were probably just
as puzzling, since they caused no message to appear. Why was the main ELSE
branch missed? Surely it is right there in your program text. What is going on?

The phenomenon you have discovered here is the famous Pascal abbreviated-IF
bug, and it is areal puzzler the first time you encounterit. The problem comes froma
built-in ambiguity of the language. You interpreted the five-line ELSE branch as
belonging to the outer IF WEEKDAY statement. But you could have interpreted that
same ELSE branch as belonging to the inner IF RAINY statement. Your indentation
suggests that you wanted the first interpretation to be true; but recall that Pascal
pays no attention to your indentation scheme. In fact, by changing only the

indentation, you could arrive at a program text that suggests the second
interpretation:

IF WEEKDAY THEN
IF RAINY THEN
WRITELN (/DRIVE TO WORK?)
ELSE
IF RAINY THEN
WRITELN (/GO TO MUSEUM‘)
ELSE
WRITELN (‘FLAY TENNIS’)

In fact, your experiment proved that the Pascal compiler chose this second
interpretation over the first one. It associated the five-line ELSE branch with the
immediately preceding IF statement.

162 APPLE PASCAL

The Pascal compiler always associates an
ELSE branch with the immediately preceding
open |F statement. If you do not want that
association, then you must close the immedi-
ately preceeding IF statement.

Let’'s see how to close the IF RAINY statement so that the ambiguous ELSE
branch will be associated with the outer IF WEEKDAY statement. You already know
one way to close a statement: end it with a semicolon. Let's try that. Insert a
semicolon after the inner IF RAINY statement. The first three lines of the IF
WEEKDAY statement should look like this:

IF WEEKDAY THEN
IF RAINY THEN o
WRITELN (' DRIVE TO WORK’)$

Run this version. Bad news. It looks as though the semicolon is a case of overkill. It
not only closed out the inner IF RAINY statement, it also closed out the outer IF
WEEKDAY statement. Then the compiler got into trouble when it tried to interpret
ELSE as the beginning of the next statement, which isillegal. That is why you got the
compile-time error message at that point. Note that the error message is not at all
helpful.

Return to the EDITOR and delete the semicolon. That stategy did not work. We
need a more limited way to close the inner IF without closing the outer one at the
same time. If we could simply bracket the inner IF, that might do the trick. Since
Pascal has the bracketing words BEGIN and END, let’s try the following strategy.

Bracket the entire IF RAINY statementbetween the words BEGIN and END. Your
text should look like this now:

IF WEEKDAY THEN
BEGIN
IF RAINY THEN ;
WRITELN (‘DRIVE TO WORK’)
END
ELSE
IF RAINY THEN
WRITELN (/GO TO MUSEUM’)
ELSE
WRITELN (‘PLAY TENNIS’)

Run the new version and test out all four Y/N combinations. Your results should
prove that the bracketing strategy was successful. The five-line ELSE branch was
associated with the outer IF WEEKDAY statement because the BEGIN/END
brackets closed off the inner IF RAINY statement.

BRANCHING STATEMENTS: IF AND CASE 163

For completeness you should know about one other way to close an abbreviated
IF statement in ambiguous situations like this. Go to the EDITOR. Delete the BEGIN
and change END to ELSE. Your IF WEEKDAY statement should now look like this:

IF WEEKDAY THEN
IF RAINY THEN
WRITELN (‘DRIVE TO WORK?)
ELSE
ELSE
IF RAINY THEN
WRITELN (/GO TO MUSEUM’)
ELSE
WRITELN (‘FLAY TENNIS’)

Run this version and confirm that it behaves exactly like the previous one.

Here is how the extra ELSE worked. When the compiler reached it, it closed out
the immediately preceding open IF statement, which was the IF RAINY, by encoding
a null ELSE branch for it. When the compiler reached the second ELSE, it correctly
associated the following branch with the immediately preceding open IF statement,
which at that point was the IF WEEKDAY statement.

Which of these two methods is best? It is largely a matter of taste and you will find
both in common use. We prefer the BEGIN/END brackets because the intent of the
programmer seems clearer. Using null branches strikes us as being tricky and
obscure.

Finally, you should note that this particular logic bug arises only whenyou use a
single abbreviated IF statement as the THEN branch of an outer IF statement. If the
THEN branch contains an abbreviated IF and even one additional statement, then
you will need BEGIN/END brackets around them anyway and the problem goes
away. You also saw that there was no problem using an abbreviated IF statement as
the ELSE branch of an outer IF. So the bug does not happen very often, which is
probably why the results are so surprising when it does happen.

8-7 ANOTHER APPROACH TO MULTIWAY BRANCHES

You have seen that under certain unusual circumstances nested IF statements
can get you into trouble. In fact, most peopie seem to have a hard time interpreting
the meaning of nested IF statements, especially as the nesting gets deeper.
Sometimes you can clarify the branching logic of a program by using the IF
statement in a different way.

Go to the EDITOR and change your BEGIN/END block to look like this:

164 APPLE PASCAL

BEGIN
WRITE (‘IS TODAY A WEEKDAY? ‘)
WEEKDAY ¢= YES#
WRITE (7IS IT RAINING? 7))}
RAINY i= YES}
WORK ‘)

WRITELN (‘DRIVE TO

WRITELN (‘FLAY TENNIS’)

END.

Note that we have introduced two new reserved words: AND and NOT.
“WEEKDAY AND RAINY” is a BOOLEAN expression. Its value is TRUE if both
WEEKDAY and RAINY are TRUE; its value is FALSE if either or both are FALSE. The
point you should note here is that the logic of the first THEN branch is now easier to
follow than before: WEEKDAY and RAINY both have to be TRUE in order to get the
message “DRIVE TO WORK?”. If either or both are FALSE, then the ELSE branch is
taken.

The ELSE branch is another IF statement. The condition this timeis “WEEKDAY
AND NOT RAINY”. The phrase “NOT RAINY” is a BOOLEAN expression that is
TRUE when RAINY is FALSE and FALSE when RAINY is TRUE. it follows from this
that “WEEKDAY AND NOT RAINY” is TRUE only if WEEKDAY is TRUE and RAINY
is FALSE. In that case the THEN branch is taken and we get the message “WALK TO
WORK”. Otherwise the next ELSE branch is taken.

There we find another IF statement with condition “NOT WEEKDAY AND
RAINY”. Note here that NOT goes with WEEKDAY and not with the whole
expression “WEEKDAY AND RAINY”. That is, the condition “NOT WEEKDAY AND
RAINY” is TRUE only if WEEKDAY is FALSE and RAINY is true. In that case the
THEN branch is taken and we get the message “GO TO MUSEUM”. Otherwise we
get to the final ELSE branch.

A look at the previous steps will show that the only way the program could have
reached the final ELSE branch is for the expression “NOT WEEKDAY AND NOT
RAINY” to be TRUE. So no additional IF statement is needed this time. Instead, the
ELSE branch simply writes the message “PLAY TENNIS”.

Run the program and confirm that it works as advertised.

You may have noticed that the logic of this version of your program really breaks
down into four successive cases. This fact would be somewhat clearer if we adopted
a special formatting convention for situations in which each ELSE branchis asimple
IF statement. Change your IF statement as follows:

BRANCHING STATEMENTS: IF AND CASE 165

IF WEEKDAY AND RAINY THEN
WRITELN (/DRIVE TO WORK’)
ELSE IF WEEKDAY AND NOT RAINY THEN
WRITELN (‘WALK TO WORK’)
ELSE IF NOT WEEKDAY AND RAINY THEN
WRITELN (‘GO TO MUSEUM’)
ELSE
WRITELN (‘FLAY TENNIS’)
END.

In a situation like this each ELSE has the meaning “take this branch if none of the
preceding conditions is true.”

8-8 GRAMMAR RULES FOR THE IF STATEMENT

Now is a good time to summarize what you have learned about the IF statement.
The general form of the |IF statement is the following:

IF condition THEN statement1 ELSE statement2

The words IF, THEN, and ELSE are reserved words. The condition is any word or
expression that has a value equal to TRUE or FALSE. In other words, it is any
expression of type BOOLEAN. Statement1 and statement2 may be any legal Pascal
statement of any kind, including assignment statements, procedure calls, the FOR,
REPEAT, and WHILE statements and even an IF or CASE statement. Statement1 or
statement2 can be either a simple statement oracompound statement, bracketed as
usual by BEGIN and END, or a null statement.

Note especially that THEN and ELSE act like punctuation marks in the structure
of the IF statement, separating the condition, statement1, and statement2 from one
another.

For that reason it is always incorrect to
place a semicolon immediately before or after
THEN or ELSE.

The only place a semicolon may be required within an IF statement is inside a
compound statement, if a compound statement is present in the IF statement. Any
other semicolon will signal the end of the IF statement, and the compiler will try to
interpret the word following the semicolon as the start of a new statement outside
the IF statement.

166 APPLE PASCAL

The meaning of the IF statement is fairly direct. If the condition is true then
statement1 is executed. If it is false, statement2 is executed.
The IF statement has an abbreviated form:

IF condition THEN statement

It means that if the condition is true then the statement is performed. If it is false
nothing happens.

As you have seen, the abbreviated form of the IF statement contains a potential
user trap that is very hard to detect. If you use an abbreviated IF statement as the
THEN branch of another IF statement that also has an ELSE branch, then you have
an ambiguous situation. Does the ELSE branch belong to the inner IF statement or
to the outer IF statement? The compiler resolves the ambiguity by always
associating an ELSE branch with the innermost open IF statement when one IF is
nested within another. If thatinterpretation is not the one you intended, then you are
in trouble. Furthermore, you get no warning. The following rule will keep you out of
trouble.

If you nest an abbreviated IF statement
inside the THEN branch of another IF state-
ment, bracket the entire inner IF statement
between BEGIN and END.

This is how such a nested |IF statement should look:

IF conditionl THEN
BEGIN
IF condition2 THEN
statementl
END
ELSE
statement?

By this arrangement you will connect the ELSE branch unambiguously with the
outer IF statement.

BRANCHING STATEMENTS: IF AND CASE 167

8-9 THE READ AND READLN PROBLEM

We will turn soon to the CASE statement, the other branching control statement
available in Pascal; but we do so in stages. Clear out your workfile and enter the
following new program.

PROGRAM CALCULATOR}$

VAR -
Ay B 2 INTEGER]
OFPERATION { CHAR}

BEGIN
. REPEAT . -
KEADLN (Ar OFERATION, E))
IF OPERATION = ‘+’ THEN
WRITELN (A + B)
ELSE IF OFERATION = ‘~‘ THEN
WRITELN (A - B)

ELSE IF OFERATION = ‘%’ THEN
WRITELN (A X B)
ELSE IF OFERATION = ‘// THEN

WRITELN (A / R)
UNTIL FALSE
END. .

Note that the program runs in aninfinite loop. Since FALSE is a constant and can
never be equal to TRUE, the REPEAT loop will go on forever. How can the program
be stopped? In just a while you will see.

Within the REPEAT loop, the first statement is a call to READLN with parameter
variables A, OPERATION, and B. A and B are integers and OPERATION is a
character. The rest of the loop is one long IF statement containing a THEN branch
and three ELSE IF/THEN branches. As you saw in Section 8-7, this type of structure
defines a set of separate cases. Which case is executed depends upon the character
value of OPERATION.

Run the program. When it halts, type 2+3.Do notinclude spaces. Press RETURN.
Then type 8-5 and press RETURN. Try 8X9 and RETURN. Try 8*9 and RETURN, and
15/2 and RETURN.

Your program behaves like a simple four-function calculator, and you should be
able to see fairly clearly how it works. The READLN procedure reads characters as
the user types them on the keyboard. It interprets the first character(s) as the digit(s)
of an integer. When it finds a character that is not a digit, it stops processing the
integer and assigns it to the variable A. Next it assigns the nondigit character to
OPERATION. Then it interprets the next character(s) as digit(s) of another integer.
That process stops when a nondigit is typed or when RETURN is pressed, and the
resulting integer value is assigned to B. After the RETURN is pressed the program
halt caused by READLN ends.

168 APPLE PASCAL

The IF statement making up the rest of the REPEAT loop then decides which of
the four cases to carry out, depending upon the value of OPERATION. The actual
arithmetic takes place inside the WRITELN parameter list. The symbols +, -, *, and/
are used by Pascal to stand for addition, subtraction, multiplication, and division.
Nothing happened when you typed 8X9 because there was no case corresponding
to OPERATION =X

If you followed the directions above, then your program is still running, waiting
for more input. How can you stop it? There are several ways, but this is the most
direct, dependable one: Hold down the CTRL key and the SHIFT key at the same
time while pressing the P key. We will call this operation CTRL-SHIFT-P or
CTRL- @, since @ is the same as SHIFT-P.) You should see the following message
on your screen:

FROGRAM INTERRUFTED BY USER
S¥ Or F¥# 7y 1% 310
TYFE +=SFACE> TO CONTINUE

Don’t worry about the numbers on the second line. They indicate where in your
program the interruption occurred. Now press the spacebar. You should see the
screen clear, hear disk activity, and see the message

HYSTEM REINITIALIZED

quickly followed by the appearance of the COMMAND prompt line.

CTRL-@ is one of those system commands, like CTRL-A, CTRL-S, and
CTRL-Z, that can be typed at any level of the system, at any time. CTRL-@ always
causes a fatal halt of any process, including system processes. When you then press
the spacebar the system does a “warm reboot”, equivalent to what itdoes when you
insert APPLEO: and press RESET during the regular boot-up procedure. CTRL-@
is also equivalent to the I(NITIALIZE command, which can only be used at
COMMAND level.

Run your program again. This time type 3 * 4, including a space after the 3. Notice
that as soon as you typed the asterisk the program halted with this message:

10 ERROR! BAD INFUT FORMAT
S¥ 1y F¥1s 1% 30
TYFE «8FACE> TO CONTINUE

Press the spacebar. Again the system does a warm reboot. The inclusion of an
innocuous space character in the user input caused a fatal error. Why? Here is the
story. The arrival of the space character signaled the end of the first integer. So A
received the value 3. Then OPERATION received the value’’. Finally, the READLN
procedure was ready to receive numeric digits for B. Instead, the next character
typed was an asterisk, which is not legal as part of an integer: hence the BAD INPUT
FORMAT complaint.

BRANCHING STATEMENTS: IF AND CASE 169

As a programmer you need to be aware of the fact that READ and READLN can
cause fatal errors when used with numeric variables. In fact, the only completely
safe way to get input from a user is by using READ with a variable of type CHAR.
Practical Pascal programs intended for general use will contain quite long and
complex procedures to get user input one character at a time and to attempt to
convert it to numbers or strings. Such procedures must take care of input format
errors without bringing the program to a halt. We will not go into detail here, but will
leave the subject with the following warning:

Never use READ or READLN with numeric
parameters in any program intended for use by
other people.

Since your current program is just for your own use, leave the READLN statement as
is; but type input responses carefully and do not include spaces.

8-10 THE CASE STATEMENT

In the previous section you got no response when you typed 8X9 because the
program didn’t recognize X as a legal operation. You can change the program to
allow X as asynonym for *. Go to the EDITOR and change the second ELSE IF line as
follows:

ELSE IF (OFERATION = ‘%’) OR (DFERATION = ’‘X’) THEN

Note that parentheses are needed when OR or AND are used between expressions
involving relational operations (=, >, <, >=, <=, <>). Run the program and press
RETURN. Type 9*8 and press RETURN. Having taken care of that problem, let’s turn
now to the general structure of the program. As you have seen, it amounts to a set of
four separate cases. Each case is discrete and no case overlaps with any other.
Whenever you have such a situation, you should see whether a CASE statement can
be used to better effect than an IF statement. You can do so in program
CALCULATOR. Halt the program via CTRL-SHIFT-P. Go to the EDITOR. Make the
following change to the REPEAT statement:

170 APPLE PASCAL

REPEAT
REAILN (Ay OFERATIONs E)3}
CASE OFERATION OF
‘7% WRITELN (A + R)$
Gt WRITELN (A - B))
‘K'y ‘X3 WRITELN (A X B)§
/7% WRITELN (A / R) ,
END (X CASE X)
UNTIL FALSE

Note that each WRITELN statement is preceded by one or more constants of type
CHAR and a colon. Each WRITELN statement is followed by a semicolon, except the
last, which is followed by END. This whole object, beginning with CASE and ending
with END, is asingle CASE statement. Run the new version and confirm that it works
as before. Try typing 8,9 and RETURN.

The CASE statement is usually preferable to the IF statement when you have
simple, discrete cases. The CASE statement is more compact, clearer, and usually
more efficient.

8-11 GRAMMAR RULES FOR THE CASE STATEMENT
The CASE statement always has the following general form:

CASE expression OF case-list END

Expression stands for anything that has an INTEGER, CHAR, or BOOLEAN value.
(In Session 11 we will extend this set of types.) Expression can be the name of a
variable, a function, a constant, or an arithmetic expression, among other things.
Case-list stands for a list of items, separated from one another by semicolons, with
each item having the following form:

label-list : statement

Label-list stands for one or more constants of the same type as the expression
above. If there are several constants, they must be separated by commas. Statement
stands for any Pascal statement, whether simple, compound, or null. As usual, a
compound statement needs to be bracketed by BEGIN and END.

The first thing that happens when a CASE statement is executed is that the
expression is evaluated. Next, a match is looked for between the resulting value and
one of the constants in one of the label-lists. If no match is found nothing happens. If
a match is found, the corresponding statement is executed.

BRANCHING STATEMENTS: IF AND CASE 171

Itisillegal for the same constant to appear in two label-lists. The compiler detects
this situation and reports an error. Note that only constants may be used in label-
lists. Variables, functions, and expressions are illegal. This fact limits the use of the
CASE statement to situations in which exact matches occur.

Use CTRL-SHIFT-P to stop your program.

8-12 A GRAPHIC APPLICATION

Now let's apply the CASE statement to a graphic application. Clear out the
workfile. Enter the following program.

This program has several familiar features as well as some new ones. At the
coarsest level of detail the BEGIN/END block contains three statements.
INITTURTLE does graphic initializations, putting the turtle in the center of the
screen headed to the right. PENCOLOR (WHITE) enables drawing with a white pen.
The third statement is a REPEAT loop that exits if CH equals 'Q’.

Within the REPEAT loop is another REPEAT loop that exits if something called
KEYPRESS becomes TRUE. Since you didn’t declare KEYPRESS, you've probably
guessed correctly that it is a BOOLEAN function defined in an external unit—
APPLESTUFF in this case. KEYPRESS is normally false. It becomes true whenever a

key on the Apple keyboard is pressed. It goes to false again if you READ the
keyboard.

172 APPLE PASCAL

As soon as the inner REPEAT loop is exited, the program executes a READ (CH)
call, which inputs the character that was typed when KEYPRESS became true.
Finally, the value of CH is used to decide which of the cases to execute in the CASE
statement. If CH =L’ then TURN (90) is executed. If CH ='R’ then TURN (-90) is
executed. (Any other value of CH causes nothing to happen.) The statement TURN
(90) makes the turtle do a 90 degree left turn away from its current heading. TURN
(-90) is a 90 degree right turn. So typing L causes a left turn, and typing R causes a
right turn. At that point the outer REPEAT loop occurs (unless the user has typed a
Q) and the program is quickly back in the inner REPEAT loop.

Run the program. While itis compiling, get your fingers positioned over the L and
R keys. As soon as you see a line being drawn on the screen press the L key a few
times. Now press the R key a few times. If the turtle gets off the screen, type Q and
run again.

As you have seen, the MOVE (1) graphic procedure call has the effect of moving
the turtle forward one screen unit in whatever direction the turtle is headed. The
screen, you recall, is 280 units wide and 192 units high. The MOVETO (X, Y)
procedure also causes the turtle to move, but not necessarily in the direction it is
headed. MOVETO (X, Y) does an “absolute move” from the turtle’s current position
to a new one X screen units from the left edge and Y screen units from the bottom.
MOVE (N) does a “relative move” of N screen units in the direction the turtle is
currently headed. Neither MOVETO nor MOVE affects the heading of the turtle. The
TURN procedure does that, as you have seen. TURN (D) turns the turtle D degrees
to the left (counterclockwise) from its current heading.

There is also a TURNTO procedure, and it is an “absolute turn” to a specific
heading. The following modifications to your CASE statement incorporate calls to
TURNTO.

CASE CH OF
v:,LRI‘Z '

e
UIN‘: TURNTO
END (x CASE x>

Note that the eight letters chosen here as case labels form a sort of square around
the G key. The key to the right of it is H, and the corresponding case in the CASE
statement says TURNTO (0). In fact a TURNTO of zero degrees corresponds to a
heading to the right. TURNTO (90) means an upwards heading, and you see indeed
that the T key is above the center G key. In general, the direction of each key away
from the center key tells the direction you want the turtle to be headed.

Enter this new version of the CASE statement and run the program. Use the eight
new keys to control the absolute heading of the turtle.

BRANCHING STATEMENTS: IF AND CASE 173

If you're having trouble controlling things, you can slow the process down a bit
by putting a wait loop inside the inner REPEAT loop. Change the REPEAT loop as
follows:

REFEAT

UNTIL K

Be sure to add WAIT to your VAR block.
The final form of program DRIVER is shown below:

PROGRAM DRIVER}#

USES
TURTLEGRAFHICS» AFPLESTUFF$

VAR
CH ¢ CHARS

BEGIN
INITTURTLE$
FENCOLOR (WHITE)S$
REPEAT
REPEAT

OR
UNTIL KEYFRESS$
REAIl (CH)$
CASE CH OF

END (X CASE X)
UNTIL CH = ‘@
END.

Run this final version.

174 APPLE PASCAL

SUMMARY
In this session you saw and did the following things:
® You used READ and READLN to get user input into a running program.
® You used variables of types CHAR and BOOLEAN.
® You defined a BOOLEAN valued function.

®m You used IF and CASE statements to control logically alternative branches of a
program.

8 You found that the ELSE branch of an IF statement can be omitted.

B You experienced a common bug associated with nesting an abbreviated IF
statement within the THEN branch of a regular IF statement.

® You found that extra semicolons within an IF statement can introduce bugs.
8 You used AND, OR, and NOT in BOOLEAN expressions.
m You used a succession of ELSE IF constructions to define logical cases.

® Youfound that CTRL-@ can be used at any time to interrupt a running program
and start a “warm reboot” of Pascal.

B You found that it is dangerous to use READ or READLN with numeric variables.

®m. You used the CASE statement in a graphic application to associate differentkey
presses with different turtle headings.

B You used the BOOLEAN KEYPRESS function to detect any Apple keyboard
activity.

® You used the MOVE, TURN, and TURNTO graphic procedures.

BRANCHING STATEMENTS: IF AND CASE 175

Here is the updated Pascal vocabulary table.

Table 8.1 Cumulative Pascal vocabulary. New words introduced in this session
are printed in boldface. (Code: a = declared in APPLESTUFF; g =
declared in TURTLEGRAPHICS)

Reserved
Words

PROGRAM
USES
CONST
VAR
PROCEDURE a
FUNCTION a
BEGIN g
FOR g
TO g
DOWNTO ¢
DO g
REPEAT g
UNTIL g
IF g
THEN g
ELSE
CASE
OF
END

DIv
MOD

AND
OR
NOT

Built-In
Procedures

READ
READLN
WRITE
WRITELN
NOTE
RANDOMIZE
FILLSCREEN
GRAFMODE
INITTURTLE
MOVE
MOVETO
PENCOLOR
TEXTMODE
TURN
TURNTO

QUESTIONS AND PROBLEMS

Built-In
Functions

Boolean
a BUTTON
a KEYPRESS

Integer
a PADDLE
a RANDOM

Other
Built-Ins

Constants
FALSE
TRUE

g NONE

g WHITE

g BLACK

g GREEN

g VIOLET

g ORANGE

g BLUE

Types
BOOLEAN
CHAR
INTEGER

Units
APPLESTUFF
TURTLEGRAPHICS

1. What problems can arise if a program uses READLN with numeric variables?

2. When is it legaland when s itillegal to have a semicolon appear within the text of

an |IF statement?

3. What causes function KEYPRESS to return a value of TRUE? What causes it to
return a value of FALSE?

4. Explain the difference between the effects of the MOVE and MOVETO

procedures.

176 APPLE PASCAL

10.

. Explain the difference between the effects of the TURN and TURNTO
procedures.
. What is an abbreviated IF statement, and what problems can it cause?

. Consider the following CASE statement:

CASE X » § OF

TRUE! WRITELN (’/GREATER’)#

FALSE:!: WRITELN (’LESS THAN OR EQUAL ‘)
END (X CASE Xx)

Is it legal? Justify your answer.

. Consider the following CASE statement:

CASE X OF

X » 5 WRITELN (/GREATER’)}$

X <= 5! WRITELN (‘LESS THAN OR EQUAL ‘)
END (x CASE X)

Is it legal? Justify your answer.

. One of the two CASE statements in questions 7 and 8 is legal. Rewrite itasan IF

statement.

Consider the following IF statement:

IF A * O THEN IF B > O THEN WRITE (‘X’) ELSE WRITE (‘Y’)

a. Indent it to clarify the meaning.

b. What output would the statement generate for the following values of Aand B?

i) A= 1, B= 1
i) A= 1, B=-1
i) A=-1, B= 1

iv) A= T, B =-1

BRANCHING STATEMENTS: IF AND CASE 177

11. In question 10, change the IF statement so that “ELSE” is replaced by “ELSE
ELSE”. Repeat parts 10(a) and 10(b) for this new version of the statement.

12. In question 10, change the IF statement so that “IF A>0THEN" isreplaced by “IF
A <0 THEN;". Repeat parts 10(a) and 10(b) for this new version of the above
statement.

13. The toll charged at a bridge is based on the type of vehicle, the number of
passengers, and the time of day. All trucks are charged $1.00 regardless of the
number of passengers or the time of day. During rush hours, cars with three or
more passengers are free; otherwise the toll is 50 cents. During non-rush hours,
the toll for all cars is 25 cents regardless of the number of passengers. Set up a
program that gets answers to the following three questions:

a. “Isita car?”

b. “Is it rush hour?”

c. “Are there three or more passengers?”

The program should then write the appropriate toll on the screen.

14. Organize the program in question 7 so that it asks no unnecessary questions.

15. Write a program that inputs an arbitrary integer and then generates an output
that depends on the number input as follows:

Input Output
<1 Nothing

1 1ST

2 2ND

3 3RD
4..20 4TH .. 20TH
> 20 Nothing

16. Change the program in question 15 so that it works correctly for integers greater
than 20. For example, if you input 33, the output should be 33RD; or if you input
101, the output should be 101ST, etc. (Hint: use the MOD operator.)

178 APPLE PASCAL

17.

18.

19.

Consider the following program:

PROGRAM TEST#

VAR
Nly N2y N3 ¢ INTEGERS?

BEGIN

WRITELN (/TYFE IN THREE INTEGERS’)}#
WRITELN (‘SEFARATED BY SFACES.)
WRITELN (/THEN FRESS RETURN’)}#
READLN (N1s N2y N3)3$

IF N1 > N2 THEN

IF N2 » N3 THEN

WRITELN (N3y 7 79 N2y 7 “» N1)
ELSE IF N1 ><ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>